Redundancy Optimization of Trusses against Uncertainty in Structural Damage

Yoshihiro Kanno

Tokyo Institute of Technology

Multi-Uncertainty and Multi-Scale Methods and Related Applications
September 14–16, 2016

theme

- robust optimization of structures
 - a lot of studies
- redundancy optimization of structures (!)
 - very limited
 - application of redundancy in coding theory (Shannon) to truss
 [Mohr, Stein, Matzies, & Knapek '14]
 - cond. prob. of failure of component (given structural failure)
 gap between max. & min. → Min. [Mousavi & Gardoni '14]
 - redundancy: amount of damage that a structure can sustain w/o losing its functionality → Max. (!)
- Y. K.: "Redundancy optimization of finite-dimensional structures: a concept and a derivative-free algorithm." J. Struct. Eng. (ASCE), to appear.

- degree of static determinacy $s = m \operatorname{rank} H$
 - *m* : # of members (bars)
 - H: equilibrium matrix $(H^{\top}$: compatibility matrix; rigidity matrix)

- degree of static determinacy $s = m \operatorname{rank} H$
- strength redundancy factor $r = l_{\rm intact}/(l_{\rm intact} l_{\rm damaged})$ [Frangopol & Curley '87]
 - $ullet \ l_{
 m intact}$: ultimate strength of the intact structure
 - $ullet l_{
 m damaged}$: ultimate strength of the damaged structure

- degree of static determinacy $s = m \operatorname{rank} H$
- strength redundancy factor $r = l_{\rm intact}/(l_{\rm intact} l_{\rm damaged})$ [Frangopol & Curley '87]
 - l_{intact} : ultimate strength of the intact structure
 - $l_{
 m damaged}$: ultimate strength of the damaged structure
- (P(D) P(C))/P(C)

[Fu & Frangopol '90]

- P(C): prob. of system collapse
- P(D): prob. of failure of a structural component

- degree of static determinacy $s = m \operatorname{rank} H$
- strength redundancy factor $r = l_{\text{intact}}/(l_{\text{intact}} l_{\text{damaged}})$

[Frangopol & Curley '87]

• (P(D) - P(C))/P(C)

[Fu & Frangopol '90]

• residual strength index $l_i/l_{\rm u}$

[Feng & Moses '86]

- l_u: ultimate strength
- l_i : strength after the *i*th structural component has failed

- degree of static determinacy $s = m \operatorname{rank} H$
- strength redundancy factor $r = l_{\text{intact}}/(l_{\text{intact}} l_{\text{damaged}})$

[Frangopol & Curley '87]

• (P(D) - P(C))/P(C)

[Fu & Frangopol '90]

• residual strength index $l_i/l_{\rm u}$

[Feng & Moses '86]

• redundancy-strength index $l_{\rm u}/l_{\rm y}$

[Husain & Tsopelas '04]

- l_u: ultimate strength
- l_y : strength at "the first significant yielding (damage of a component)"

- degree of static determinacy $s = m \operatorname{rank} H$
- strength redundancy factor $r = l_{\text{intact}}/(l_{\text{intact}} l_{\text{damaged}})$

[Frangopol & Curley '87]

• (P(D) - P(C))/P(C)

[Fu & Frangopol '90]

ullet residual strength index $l_i/l_{
m u}$

[Feng & Moses '86]

• redundancy-strength index $l_{\rm u}/l_{\rm y}$

[Husain & Tsopelas '04]

strong redundancy

[K. & Ben-Haim '11]

- degree of static determinacy $s = m \operatorname{rank} H$
- strength redundancy factor $r = l_{\text{intact}}/(l_{\text{intact}} l_{\text{damaged}})$

[Frangopol & Curley '87]

• (P(D) - P(C))/P(C)

[Fu & Frangopol '90]

• residual strength index l_i/l_u

[Feng & Moses '86]

• redundancy-strength index $l_{\rm u}/l_{\rm y}$

[Husain & Tsopelas '04]

strong redundancy

[K. & Ben-Haim '11]

common understanding

high redundancy:

small degradation of performance when some structural components are damaged

- strong redundancy
 - := greatest level of structural degradation
 without violating the performance requirement

[K. & Ben-Haim '11]

- strong redundancy
- Which has higher redundancy?

- # of members = 25
- deg. of static indeterminacy = 9

- strong redundancy
- Which has higher redundancy?
 - Concerning stability (rigidity) requirement, (A) < (B), because

- strong redundancy
- Which has higher redundancy?
 - Concerning stability (rigidity) requirement, (A) < (B), because

- (A') and (B') are the worst damage scenarios.
- a design problem:
 - maximizing redundancy

redundancy optimization: a concept

- deficiency set $\mathcal{D}(\alpha)$: set of damage scenarios s. t. at most α bars are absent
- structural performance p(x)
- performance in the worst scenario:

$$p^{\text{ws}}(\alpha) := \min\{p(\mathbf{x}) \mid \mathbf{x} \in \mathcal{D}(\alpha)\}\$$

redundancy optimization:

Maximize $p^{\text{ws}}(\alpha)$ (α : given)

- uncertainty: damage scenario
 - optimize: performance in the worst case
 - (one of) difficulties: dependency of the worst case on design variables

redundancy optimization: an example

- deficiency set $\mathcal{D}(\alpha)$: set of damage scenarios s. t. at most α bars are absent
- structural performance: limit load factor λ^*
 - conventional optimization: maximizing λ^*

redundancy optimization: an example

- deficiency set $\mathcal{D}(\alpha)$: set of damage scenarios s. t. at most α bars are absent
- structural performance: limit load factor λ^*
 - conventional optimization: maximizing λ^*
- limit load factor in the worst scenario

$$\lambda^{\text{ws}}(\alpha) := \min\{\lambda^*(\mathbf{x}) \mid \mathbf{x} \in \mathcal{D}(\alpha)\}$$

can be computed via mixed-integer programming.

[K. '12]

- redundancy optimization: maximizing $\lambda^{ws}(\alpha)$
 - design variables: bar cross-sectional areas
 - constraint: total bar volume

an algorithm: overview

an algorithm: overview

- difficulty of the optimization problem
 - For a given design:
 - evaluation of objective function requires expensive simulation
 limit analysis (convex optimization)
 - no analytical gradient
- derivative-free method
 - stencil gradient

[Kelly '99]

- \simeq finite difference method, but
- (usu.) less # of function evaluations
- SQP (sequential quadratic programming)
 - use stencil gradient as a substitute of gradient

an algorithm: stencil gradient

- current point: x sample points: z_1, \ldots, z_n
- stencil gradient:

$$abla_{\mathrm{S}}f(x) := Y^+ \delta$$
 $Y = \begin{bmatrix} z_1 - x_1 & \cdots & z_n - x_n \end{bmatrix}, \quad \delta = \begin{bmatrix} f(z_1) - f(x) \\ \vdots \\ f(z_n) - f(x) \end{bmatrix}$

- special case: $Y = tI \rightarrow \text{finite difference}$
- previous iterations x_{k-1}, x_{k-2}, \ldots can be used as sample points \rightarrow (usu.) less # of function evaluations
- implicit filtering (adaptive change of difference increment) [Kelly '99]
 - large → small as optim. proceeds
 - may possibly avoid poor local minimum

optimization results

problem setting

optimization results

problem setting

- conventional optimization (w/o considering redundancy)
 - maximize limit load factor λ^*
 - design variables: bar areas

optimization results: conventional optimization

conventional optimization (w/o considering redundancy)

- By removing one bar, the solution becomes unstable.
 - deg. of static determinacy = 0 (i.e., statically determinate)
 - redundancy measure = 0

- maximize λ^* w/ redundancy measure $\alpha = 1$,
 - i.e., optim. against the worst scenario s. t. one bar is missing.

- 376 SQP iters.
- 3699 MILP for worst-case analysis

- maximize λ^* w/ redundancy measure $\alpha = 1$,
 - i.e., optim. against the worst scenario s. t. one bar is missing.

multiple worst scenarios at the opt. sol.

- maximize λ^* w/ redundancy measure $\alpha = 1$,
 - i.e., optim. against the worst scenario s. t. one bar is missing.

- multiple worst scenarios at the opt. sol.
- multiplicity of w. s. means redundancy optim. is nonsmooth optim.

- maximize λ^* w/ redundancy measure $\alpha = 2$,
 - i.e., optim. against the worst scenario s. t. at most two bars can possibly be missing.

- 327 SQP iters.
- 3326 MILPs

- maximize λ^* w/ redundancy measure $\alpha = 2$,
 - i.e., optim. against the worst scenario s. t. at most two bars can possibly be missing.

multiple worst scenarios at the opt. sol.

another example

problem setting

- conventional optimization (w/o considering redundancy)
 - maximize limit load factor λ^*
 - design variables: bar areas

- maximize λ^* w/ redundancy measure $\alpha = 1$,
 - i.e., optim. against the worst scenario s. t. one bar is missing.

- 200 SQP iters.
- 1960 MILPs

- maximize λ^* w/ redundancy measure $\alpha = 1$,
 - i.e., optim. against the worst scenario s. t. one bar is missing.

multiple worst scenarios at the opt. sol.

multiplicity = 9

- maximize λ^* w/ redundancy measure $\alpha = 2$,
 - i.e., optim. against the worst scenario s. t. at most two bars can possibly be missing.

- 378 SQP iters.
- 4014 MILPs

- maximize λ^* w/ redundancy measure $\alpha = 2$,
 - i.e., optim. against the worst scenario s. t. at most two bars can possibly be missing.

- 378 SQP iters.
- 4014 MILPs
- multiple worst scenarios at the opt. sol. (multiplicity = 18)

conclusions

- structural redundancy
 - greatest level of structural degradation
 without violating the performance requirement
- worst scenario in limit analysis
 - given: # of damaged structural components
 redundancy measure
 - uncertainty: damage
- redundancy optimization
 - maximize the limit load factor in the worst scenario
 - multiplicity of worst scenarios at an optimal solution