Large Deflection Analysis of Cable Networks
by Second-Order Cone Program

Kyoto University
Y. Kanno and M. Ohsaki
Large deformation analysis of cable network:

- **Given**
 - supports: $b_i^0 \in \mathbb{R}^3$
 - external forces: $\bar{f} \in \mathbb{R}^{3N_n}$
 - member unstressed length: l_i^0

- **Find**
 - internal nodes: $x \in \mathbb{R}^{3N_n}$
Stress unilateral behavior:

Backgrounds:

- transmit **only tension force**

 1. **trial-and-error**
 - (a) assume whether in **tensile** or **slackening state**
 - (b) check the obtained solution
 - (c) correct the assumption

 2. **singularity** of the tangent stiffness matrix

The proposed algorithm:

1. **Second-Order Cone Programming (SOCP) problem**
 \[\text{min. of Total Potential Energy} \]

2. **pin-joints**, frictionless joints

3. **no assumption** on stress state

4. convergence
 - (a) **unstable** cable networks
 - (b) estimate of stress states is difficult
Second-Order Cone Programming : SOCP

1. convex programming
2. including LP, QP, etc.
3. included in SDP
4. primal-dual interior-point method
 (Monteiro and Tsuchiya, 2000)
 • polynomial time convergence
5. applications
 (a) truss topology optimization (Jarre et al., 1998)
 (b) magnetic shield design
 (Sasakawa and Tsuchiya, 2000)
 (c) antenna array design (Scholnik and Coleman, 2000)
Second-Order Cone Programming: SOCP

Minimize \[b^\top y \]

subject to \[A^\top y + x = c, \]
\[x_0 \geq \|x_1\|. \]

Variable vectors
\[x = (x_0, x_1) \in \mathbb{R}^n, \quad y \in \mathbb{R}^m \]

Definitions
\[\|x_1\| = (x_1^\top x_1)^{1/2} \] : Euclidean norm
\[\mathcal{K}(n) = \{(x_0, x_1)|x_0 \geq \|x_1\|\} \] : second-order cone

Constant matrix and vectors
\[A \in \mathbb{R}^{m \times n}, \quad b \in \mathbb{R}^m, \quad c \in \mathbb{R}^n \]

Second-order cone in 3-dimensional space
Minimization problem of TPE

\[
\text{TPE} : \text{Minimize} \quad \sum_{i=1}^{N^m} w_i(y_i) - \overline{f}^\top x
\]

subject to \[
w_i(y_i) = \begin{cases}
\frac{1}{2} k_i y_i^2, & (y_i \geq 0), \\
0, & (y_i < 0),
\end{cases}
\]
\[
y_i = \| B_i x + b_i^0 \| - l_i^0.
\]

Variables:
\[
y_i : \text{member elongation}, \quad x : \text{internal nodes}
\]

Given:
\[
\overline{f} : \text{external forces}, \quad l_i^0 : \text{member unstressed length}, \\
b_i^0 : \text{supports}, \quad B_i^0 : \text{adjacency matrices}
\]

Strain energy:
\[
w_i(y_i) : \text{strain energy}, \quad k_i : \text{extensional stiffness}
\]
The image shows two graphs:

- **Axial force-elongation** graph:
 - The graph plots axial force (N_i) against elongation (y_i).
 - There is a linear relationship between N_i and y_i with a slope k_i.
 - The origin $(0, 0)$ is labeled, indicating no force or elongation.

- **Strain energy** graph:
 - The graph plots strain energy (w_i) against elongation (y_i).
 - The graph shows a nonlinear relationship, typical for strain energy, increasing rapidly with elongation.
 - The origin $(0, 0)$ is labeled, indicating no strain energy at zero elongation.

The graphs illustrate the relationship between force and elongation as well as the strain energy associated with this deformation.
1. nonconvex problem

2. w_i depends on the sign of y_i
 - assumptions are required
 - trial-and-error process
Minimization problem of TPE:

\[
\text{TPE} : \quad \text{Minimize } \sum_{i=1}^{N^m} w_i(y_i) - \bar{f}^\top x
\]

subject to

\[
w_i(y_i) = \begin{cases}
\frac{1}{2} k_i y_i^2, & (y_i \geq 0), \\
0, & (y_i < 0),
\end{cases}
\]

\[
y_i = \| B_i x + b^0_i \| - l^0_i.
\]

SOCP formulation:

\[
\text{SOCP} : \quad \text{Minimize } \sum_{i=1}^{N^m} \frac{1}{2} k_i y_i^2 - \bar{f}^\top x
\]

subject to

\[
y_i \geq \| B_i x + b^0_i \| - l^0_i.
\]
in tensile state:

\[w_i \]

\[y_i \]

stray energy

\[0 \]

\[\|B_ix + b_i^0\| - l_i^0 \]

TPE

SOCP

optimal

feasible
slackening:

\[\|B_i x + b_i^0\| - \ell_i^0 \]

\[w_i \]

\[y_i \]

TPE

SOCP
SOCP:

1. has the same optimizer as that of TPE
2. convex problem
3. efficient algorithm
 - no assumption is required—no trial-and-error process
 - polynomial-time convergence—IPM
Nonlinear constitutive law \implies SOCP:

Bi-linear material.

quadratic-linear constitutive law.

stiffness reduction:

1. small elongation
2. strand cable becomes lose
3. deflection of cable \Leftarrow own weight
Optimality conditions:

SOCP: Minimize \[\sum_{i=1}^{N^m} \frac{1}{2} k_i y_i^2 - \bar{f}^T x \]
subject to \[y_i \geq \|B_i x + b_i^0\| - \bar{l}_i. \]

Lagrangian multipliers

\[q_i \in \mathbb{R}, \quad v_i \in \mathbb{R}^3, \quad (i = 1, 2, \ldots, N^m). \]

KKT conditions:

\[q_i = k_i y_i, \quad \text{: constitutive law} \]
\[\sum_{i=1}^{N^m} B_i^T v_i + \bar{f} = 0, \quad \text{: equilibrium equations} \]
\[(y_i + \bar{l}_i^0)q_i + (B_i x + b_i^0)^T v_i = 0, \]
\[y_i \geq \|B_i x + b_i^0\| - \bar{l}_i^0, \quad q_i \geq \|v_i\|. \]

- \(q_i \): axial force
- \(v_i \): internal force vector
Examples:

SOCP : solve SOCP problem by IPM.
TPE : solve min. of TPE by IPM.
NR : Newton-Raphson method (tangent stiffness).

Model (I)

Model (II)

Model (III)
Self-equilibrium shape analysis

<table>
<thead>
<tr>
<th>Algorithm</th>
<th>Model</th>
<th>Steps</th>
<th>CPU Time (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>Total</td>
</tr>
<tr>
<td>SOCP</td>
<td>(I) 195</td>
<td>11</td>
<td>0.23</td>
</tr>
<tr>
<td></td>
<td>(II) 740</td>
<td>14</td>
<td>1.42</td>
</tr>
<tr>
<td></td>
<td>(III) 1056</td>
<td>15</td>
<td>2.46</td>
</tr>
<tr>
<td>TPE</td>
<td>(I) 135</td>
<td>22</td>
<td>0.50</td>
</tr>
<tr>
<td></td>
<td>(II) 520</td>
<td>22</td>
<td>2.44</td>
</tr>
<tr>
<td></td>
<td>(III) 744</td>
<td>22</td>
<td>3.81</td>
</tr>
<tr>
<td>NR</td>
<td>(I) 75</td>
<td>19</td>
<td>0.28</td>
</tr>
<tr>
<td></td>
<td>(II) 300</td>
<td>22</td>
<td>4.71</td>
</tr>
<tr>
<td></td>
<td>(III) 432</td>
<td>22</td>
<td>20.31</td>
</tr>
</tbody>
</table>

1. CPU time

- $O(n) < \text{SOCP} < \text{TPE} < O(n^2)$
- $O(n^2) < \text{NR} < O(n^3)$

2. # of variables : n

- $\text{SOCP} > \text{TPE} > \text{NR}$
Dependence of initial solutions

<table>
<thead>
<tr>
<th>algorithm</th>
<th>model</th>
<th>(A)</th>
<th>(B)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>steps</td>
<td>steps</td>
</tr>
<tr>
<td>SOCP</td>
<td>(I)</td>
<td>135</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>(II)</td>
<td>520</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>(III)</td>
<td>744</td>
<td>11</td>
</tr>
<tr>
<td>TPE</td>
<td>(I)</td>
<td>135</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>(II)</td>
<td>520</td>
<td>11</td>
</tr>
<tr>
<td></td>
<td>(III)</td>
<td>744</td>
<td>15</td>
</tr>
<tr>
<td>NR</td>
<td>(I)</td>
<td>75</td>
<td>22</td>
</tr>
<tr>
<td></td>
<td>(II)</td>
<td>300</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>(III)</td>
<td>432</td>
<td>9</td>
</tr>
</tbody>
</table>

1. SOCP (A) \(\cong \) SOCP (B)

2. NR (B) : fail

 tangent stiffness matrix : singular

![Initial solution (A).](image1)

![Initial solution (B).](image2)
Initial configuration with many slackening members

<table>
<thead>
<tr>
<th>algorithm</th>
<th>model</th>
<th>steps</th>
<th>CPU time (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>constitutive law</td>
<td>n</td>
<td>total</td>
</tr>
<tr>
<td>SOCP</td>
<td>linear</td>
<td>744</td>
<td>45</td>
</tr>
<tr>
<td>SOCP</td>
<td>quadratic</td>
<td>1056</td>
<td>34</td>
</tr>
<tr>
<td>TPE</td>
<td>linear</td>
<td>744</td>
<td>51</td>
</tr>
<tr>
<td>TPE</td>
<td>quadratic</td>
<td>744</td>
<td>**</td>
</tr>
<tr>
<td>NR</td>
<td>linear</td>
<td>432</td>
<td>**</td>
</tr>
<tr>
<td>NR</td>
<td>quadratic</td>
<td>432</td>
<td>**</td>
</tr>
</tbody>
</table>

** : did not converge within 1000 steps.

1. **SOCP** : converge
2. **TPE, NR** : fail (oscillation)
 - trial-and-error process

Model (III'): Slackening members.
Bi-linear material

<table>
<thead>
<tr>
<th>algorithm</th>
<th>model</th>
<th>steps</th>
<th>CPU time (sec.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>total</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SOCP</td>
<td>(I) 195</td>
<td>10</td>
<td>0.44</td>
</tr>
<tr>
<td></td>
<td>(II) 740</td>
<td>10</td>
<td>1.39</td>
</tr>
<tr>
<td></td>
<td>(III) 1056</td>
<td>10</td>
<td>2.06</td>
</tr>
<tr>
<td>TPE</td>
<td>(I) 135</td>
<td>10</td>
<td>0.58</td>
</tr>
<tr>
<td></td>
<td>(II) 520</td>
<td>11</td>
<td>1.62</td>
</tr>
<tr>
<td></td>
<td>(III) 774</td>
<td>11</td>
<td>2.17</td>
</tr>
<tr>
<td>NR</td>
<td>(I) 75</td>
<td>10</td>
<td>0.32</td>
</tr>
<tr>
<td></td>
<td>(II) 300</td>
<td>32</td>
<td>6.92</td>
</tr>
<tr>
<td></td>
<td>(III) 432</td>
<td>34</td>
<td>31.66</td>
</tr>
</tbody>
</table>

External loads.

Members in plastic state

![Graph showing load versus displacement](image1)

![Graph showing stress-strain relationship](image2)
Conclusions:

1. An **SOCP formulation** has been proposed for large deformation analysis of cable networks.
 (a) **pin-joints**
 (b) **frictionless joints**
 (c) **nonlinear material**

2. Equilibrium configurations are obtained by solving SOCP problems by using **Interior Point Method**.
 (a) **no assumption** on stress state
 (b) **no process of trial and error**

3. SOCP formulation is **more efficient** than
 (a) min. of **Total Potential Energy**.
 (b) **Newton-Raphson method** based on tangent stiffness.