Discrete Optimization of Damper Placement in a Shear Building via Mixed Integer Programming

> Yoshihiro Kanno University of Tokyo (Japan)

> > September 9, 2013 ICOVP 2013

• linear-quadratic regulator (optimal control)

[Gluck, Reinhorn, Gluck & Levy '96]

- sequential search algorithm [Shukla & Datta '99] [López García '01] (heuristics introducing damper units sequentially)
- minimization of transfer function
 [Takewaki '97] [Takewaki & Yoshitomi '98] [Cimellaro '07] [Aydin '12]
- analogy of fully-stressed design

[Lavan & Levy '06]

• linear-quadratic regulator (optimal control)

[Gluck, Reinhorn, Gluck & Levy '96]

- sequential search algorithm [Shukla & Datta '99] [López García '01(*1)] (heuristics introducing damper units sequentially)
- minimization of transfer function [Takewaki '97(*2)] [Takewaki & Yoshitomi '98] [Cimellaro '07] [Aydin '12]
- analogy of fully-stressed design
- comparison of (*1), (*2), & (*3)

[Whittle, Williams, Karavasilis & Blakeborough '12]

- broadly comparable performances
- this study: "(*2) & discrete variables" \leftarrow global optimization (damping coefficient) $\in \{0, \bar{c}, 2\bar{c}, 3\bar{c}, ...\}$

Discrete Optimization of Damper Placement

[Lavan & Levy '06(*3)]

mixed-integer programming

• m-i linear prog.:

min $f^{\mathrm{T}}x + r^{\mathrm{T}}y$ s.t. $Ax + Gy \le b$ $x \in \{0, 1\}^n, y \in \mathbb{R}^m$

mixed-integer programming

• m-i linear prog.:

min $f^{\mathrm{T}}x + r^{\mathrm{T}}y$ s.t. $Ax + Gy \leq b$ $x \in \{0, 1\}^n, y \in \mathbb{R}^m$

- replace $x \in \{0, 1\}^n$ with $0 \le x \le 1 \longrightarrow$ linear prog.
- can be solved with, e.g., branch-and-bound method

• m-i second-order cone prog.:

min
$$f^{\mathrm{T}} \boldsymbol{x} + \boldsymbol{r}^{\mathrm{T}} \boldsymbol{y}$$

s.t. $||A_l \boldsymbol{x} + G_l \boldsymbol{y} - \boldsymbol{b}_l|| \le \boldsymbol{d}_l^{\mathrm{T}} \boldsymbol{x} + \boldsymbol{e}_l^{\mathrm{T}} \boldsymbol{y} - h_l$
 $\boldsymbol{x} \in \{0, 1\}^n, \quad \boldsymbol{y} \in \mathbb{R}^m$

- replace $x \in \{0, 1\}^n$ with $0 \le x \le 1 \longrightarrow$ convex prog. (s-o cone prog.)
- can be solved with, e.g., branch-and-bound method

eq. of motion (*n*-story shear building model)

$$K\boldsymbol{u} + C\dot{\boldsymbol{u}} + M\ddot{\boldsymbol{u}} = -M\ddot{\boldsymbol{u}}_{\mathrm{g}}\boldsymbol{1}$$

- $u \in \mathbb{R}^n$: floor disp. vector
- \ddot{u}_{g} : base acceleration

eq. of motion (*n*-story shear building model)

 $K\boldsymbol{u} + C\dot{\boldsymbol{u}} + M\ddot{\boldsymbol{u}} = -M\ddot{\boldsymbol{u}}_{g}\boldsymbol{1}$

- $u \in \mathbb{R}^n$: floor disp. vector
- \ddot{u}_{g} : base acceleration

- *K* : stiffness matrix
- *C*(*c*) : damping matrix
 - c_i : damping coefficient of damper $i \leftarrow design variable$
- M : mass matrix

transfer fcn. of interstory drift

• eq. of motion in freq. domain:

$$(K + i\omega C - \omega^2 M) \mathbf{v}(\omega) = -M \ddot{\mathbf{v}}_{g}(\omega) \mathbf{1}$$

- $v(\omega)$: Fourier transform of floor disp. *u*
- $\ddot{v}_{g}(\omega)$: Fourier transform of base accel. \ddot{u}_{g}
- transfer fcn. of *u*: $\hat{v} = v(\bar{\omega})/\ddot{v}_{g}(\bar{\omega})$ $(\bar{\omega} : fundamental freq.)$

transfer fcn. of interstory drift

• eq. of motion in freq. domain:

$$(K + i\omega C - \omega^2 M) \mathbf{v}(\omega) = -M \ddot{\mathbf{v}}_{g}(\omega) \mathbf{1}$$

- $v(\omega)$: Fourier transform of floor disp. *u*
- $\ddot{v}_{g}(\omega)$: Fourier transform of base accel. \ddot{u}_{g}
- transfer fcn. of *u*:

 $(\bar{\omega}$: fundamental freq.)

$$\hat{\mathbf{v}} = \mathbf{v}(\bar{\omega})/\ddot{v}_{\rm g}(\bar{\omega})$$

transfer fcn. of interstory drifts:

$$\hat{\boldsymbol{\delta}} = \boldsymbol{H}^{\mathrm{T}} \hat{\boldsymbol{v}}$$

• interstory drifts: $d = H^{T}u$ with constant matrix H

n

• [Takewaki '97] : Minimize
$$\sum_{i=1}^{n} |\hat{\delta}_i|$$

optimal placement problem [Takewaki '97]

• min. of sum of transfer fcn. ampls. of interstory drifts:

$$\begin{array}{ll} \min & \sum_{i=1}^{n} |\hat{\delta}_{i}| \\ \text{s.t.} & \hat{\delta} = H^{\mathrm{T}} \hat{v} & (\text{def. of } \hat{\delta}_{i}) \\ & (K + i \bar{\omega} C(\boldsymbol{c}) - \bar{\omega}^{2} M) \hat{v} = -M \mathbf{1} & (\text{eq. of m.}) \\ & \sum_{i=1}^{n} c_{i} \leq c_{\text{sum}}^{\max} & (\text{upper bound}) \\ & c_{i} \geq 0 \quad (i = 1, \dots, n) \end{array}$$

variables are

- $c \in \mathbb{R}^n$: damper damping coeffs.
- $\hat{v} \in \mathbb{C}^n$: transfer fcn. of floor disps.
- $\hat{\delta} \in \mathbb{C}^n$: transfer fcn. of interstory drifts

discrete optimization

$$\min \sum_{i=1}^{n} |\hat{\delta}_{i}|$$

s.t. $\hat{\delta} = H^{T} \hat{v}$
 $(K + i\bar{\omega}C(c) - \bar{\omega}^{2}M)\hat{v} = -M\mathbf{1}$
 $\sum_{i=1}^{n} c_{i} \leq c_{sum}^{max}$
 $c_{i} \in \{0, \bar{c}, 2\bar{c}, \dots, p\bar{c}\}$ $(i = 1, \dots, n)$ (*)

- (\clubsuit) : choose c_i among available candidates
 - "0" or "a multiple of \bar{c} "
- \rightarrow propose a global opt. approach
 - mixed-integer programming

towards mixed-integer programming

• <u>use of 0–1 variables:</u>

$$x_{ij} \in \{0, 1\}, \quad x_{i1} \ge x_{i2} \ge \cdots \ge x_{ip}$$

• choice of damper c_i :

$$c_i \in \{0, \bar{c}, 2\bar{c}, \dots, p\bar{c}\} \quad \Leftrightarrow \quad c_i = \bar{c} \sum_{j=1}^p x_{ij}$$

towards mixed-integer programming

• <u>use of 0–1 variables:</u>

$$x_{ij} \in \{0, 1\}, \quad x_{i1} \ge x_{i2} \ge \cdots \ge x_{ip}$$

• choice of damper c_i :

$$c_i \in \{0, \bar{c}, 2\bar{c}, \dots, p\bar{c}\} \quad \Leftrightarrow \quad c_i = \bar{c} \sum_{j=1}^p x_{ij}$$

• min. of $\sum_{i=1}^{n} |\hat{\delta}_i|$: $(\hat{\delta}_i \in \mathbb{C})$ $\min \sum_{i=1}^{n} y_i$ s. t. $y_i \ge \|(\operatorname{Re} \delta_i, \operatorname{Im} \delta_i)\|$ (soc)

• min. of max{ $|\hat{\delta}_1|, ..., |\hat{\delta}_6|$ } :

min y s. t.
$$y \ge ||(\operatorname{Re} \delta_i, \operatorname{Im} \delta_i)||$$

Discrete Optimization of Damper Placement

(SOC)

mixed-integer second-order cone programming formulation

$$\begin{array}{ll} \min & \sum_{i=1}^{n} y_{i} \\ \text{s. t.} & y_{i} \geq \|(\operatorname{Re} \delta_{i}, \operatorname{Im} \delta_{i})\|, \quad \hat{\delta} = H^{\mathrm{T}} \hat{v} \\ & (K - \bar{\omega}^{2} M) \hat{v} + \mathrm{i} \bar{\omega} H \boldsymbol{q} = -M \mathbf{1} \qquad (\text{eq. of m.}) \\ & q_{i} = \bar{c} \sum_{j=1}^{p} w_{ij} \qquad (\text{t. fcn. of story shear}) \\ & |w_{ij}| \leq \mu x_{ij}, \quad |w_{ij} - \boldsymbol{h}_{i}^{\mathrm{T}} \hat{v}| \leq \mu (1 - x_{ij}) \\ & x_{ij} \in \{0, 1\}, \quad x_{i1} \geq x_{i2} \geq \cdots \geq x_{ip} \end{array}$$

- replace $x_{ij} \in \{0, 1\}$ with $0 \le x_{ij} \le 1 \longrightarrow$ convex prog. (SOCP)
- can be solved by a branch-and-bound method
- software packages are available (e.g., Gurobi Optimizer, CPLEX)

more constraints on damper damping coefficients

• 0–1 variables (as before):

$$x_{ij} \in \{0, 1\}, \quad x_{i1} \ge x_{i2} \ge \cdots \ge x_{ip}$$

• choice of damper c_i :

$$c_i \in \{0, \bar{c}, 2\bar{c}, \dots, p\bar{c}\} \quad \Leftrightarrow \quad c_i = \bar{c} \sum_{i=1}^p x_{ij}$$

• γ : upper bound for the # of damped stories

$$\sum_{i=1}^n x_{i1} \le \gamma$$

more constraints on damper damping coefficients

• 0–1 variables (as before):

$$x_{ij} \in \{0, 1\}, \quad x_{i1} \ge x_{i2} \ge \cdots \ge x_{ip}$$

• choice of damper c_i :

$$c_i \in \{0, \bar{c}, 2\bar{c}, \dots, p\bar{c}\} \quad \Leftrightarrow \quad c_i = \bar{c} \sum_{i=1}^p x_{ij}$$

• $\bar{r}\bar{c}$: lower bound for damping coefficient (i.e., $c_i \in \{0, \bar{r}\bar{c}, (\bar{r}+1)\bar{c}, (\bar{r}+2)\bar{c}, \dots, p\bar{c}\})$

 $x_{i1} \leq x_{i\bar{r}} \quad (i = 1, \dots, n)$

•
$$x_{i1} = 1 \Rightarrow x_{i2} = \cdots = x_{i\bar{r}} = 1$$

• $x_{i\bar{r}} = 0 \Rightarrow x_{i1} = \cdots = x_{i,\bar{r}-1} = 0$

more constraints on damper damping coefficients

• 0–1 variables (as before):

$$x_{ij} \in \{0, 1\}, \quad x_{i1} \ge x_{i2} \ge \cdots \ge x_{ip}$$

• choice of damper c_i :

$$c_i \in \{0, \bar{c}, 2\bar{c}, \dots, p\bar{c}\} \quad \Leftrightarrow \quad c_i = \bar{c} \sum_{j=1}^p x_{ij}$$

• at most 1 damper can be added to 2 adjacent stories:

$$x_{i1} + x_{i+1,1} \le 1$$
 $(i = 1, \dots, n-1)$

• at most 1 damper can be added to 3 adjacent stories:

$$x_{i1} + x_{i+1,1} + x_{i+2,1} \le 1$$
 $(i = 1, ..., n-2)$

ex. 1) uniform stiffness distribution

- n = 6-story model
- mass: $m_i = 80,000 \text{ kg} (i = 1, \dots, 6)$
- stiffness: $k_i = 40,000 \text{ kN/m} (i = 1, ..., 6)$
- damper damping coefficients c_i
 - upr. bd. for sum of c_i 's: $c_{sum}^{max} = 9,000 \text{ kNs/m}$

← same setting as [Takewaki '97]

ex. 1) uniform stiffness distribution

- n = 6-story model
- mass: $m_i = 80,000 \text{ kg} (i = 1, \dots, 6)$
- stiffness: $k_i = 40,000 \text{ kN/m} (i = 1, ..., 6)$
- damper damping coefficients *c_i*
 - upr. bd. for sum of c_i 's: $c_{sum}^{max} = 9,000 \text{ kNs/m}$

← same setting as [Takewaki '97]

- candidate values:
 - $c_i \in \{0, 500, 1000, \dots, 7500\}$ kNs/m
 - $c_i \in \{0, 200, 400, \dots, 6000\}$ kNs/m
 - $c_i \in \{0, 100, 200, \dots, 6000\} \text{ kNs/m}$

ex. 1) optimal solutions (uniform stiffness)

• damper damping coeffs.

• similar to solutions in [Takewaki '97] (continuous opt.)

ex. 1) transfer functions (uniform stiffness)

• interstory drifts $|\hat{\delta}_i|$ (at fundamental freq. $\bar{\omega}$)

• $|\hat{\delta}_i|$ is drastically decreased especially in the lower stories.

comparison of two solvers

	CPLE	EX (ver. 12.2)	Gurobi (ver. 5.0)	
р	Time (s)	# of B&B nodes	Time (s)	# of B&B nodes
15	3.1	25,233	7.7	20,536
30	172.6	837,374	135.2	465,107
60	2,103.5	6,164,308	1,210.9	1,954,957

6-Core Intel Xeon Westmere (2.66 GHz) with 64 GB RAM

- problem size (p = 60)
 - # of 0–1 variables: 360
 - # of continuous variables: 402
 - # of lin. ineq. constraints: 1,615
 - # of lin. eq. constraints: 36
 - # of SOC constraints: 6

ex. 1) more constraints (uniform stiffness)

- constraints on damper damping coeffs.
 - upr. bd. for # of dampers: $\gamma = 3$
 - no adjacent damped stories

ex. 2) uniform distribution of amplitudes of transfer functions

- masses & damper damping coeffs.: same as the previous ex.
- distribution of story stiffnesses [Takewaki '97] :

• With uniform damping $(c_1 = \cdots = c_6)$, distribution of $|\hat{\delta}_i|$ becomes uniform $(|\hat{\delta}_1| = \cdots = |\hat{\delta}_6|)$.

ex. 2) optimal solutions

(a) $c_i \in \{0, 100, \dots, 6000\}$ kNs/m

- (a) obj. val. = 0.201158
- (b) obj. val. = 0.201162
- (c) obj. val. = 0.201222
 - In [Takewaki '97] : obj. val. = 0.2027

ex. 2) optimal solutions

(b) $c_i \in \{0, 200, \dots, 6000\}$ kNs/m

- [Takewaki '97] solved a continuous opt. prob.
 - There, dampers were placed to all stories.
- This study finds a global opt. sol. of a discrete prob.
 - The solution is better than the one in [Takewaki '97] .

ex. 2) transfer functions

• interstory drifts $|\hat{\delta}_i|$ (at fundamental freq. $\bar{\omega}$)

"----" optimal solution for $c_i \in \{0, 500, ..., 7500\}$ kNs/m "----" uniform damping ($c_1 = \cdots = c_6 = 1,500$ kNs/m)

• $|\hat{\delta}_i|$'s are not decreased drastically.

	CPLE	X (ver. 12.2)	Gurobi (ver. 5.0)	
р	Time (s)	# of B&B nodes	Time (s)	# of B&B nodes
15	26.3	146,817	16.6	100,999
30	1,455.6	6,158,001	880.6	4,623,129
60	62,021.6	128,500,335	33,917.6	88,934,141
	$(\simeq 17.2 \text{h})$		$(\simeq 9.4 \text{h})$	

6-Core Intel Xeon Westmere (2.66 GHz) with 64 GB RAM

- probably a hard MIP problem
 - probably, very many "quite good" solutions & few "bad" solutions
 - uniform damping: obj. val. = 0.203292
 - optimal solution: obj. val. = 0.201158

ex. 2) with more constraints

• upr. bd. for # of dampers: $\gamma = 3$

ex. 2) with more constraints

(a) $c_i \in \{0, 100, \dots, 6000\}$ kNs/m

- upr. bd. for # of dampers: $\gamma = 3$
- no adjacent damped stories

ex. 2) with more constraints

(a) $c_i \in \{0, 100, \dots, 6000\}$ kNs/m

- upr. bd. for # of dampers: $\gamma = 2$
- no adjacent damped stories

conclusions

- optimal damper placement
 - supplemental viscous dampers
 - in a shear building model
- min. of transfer fcn. of interstory drifts
 - Minimize $\sum_{i=1}^{n} |\hat{\delta}_i|$ / Minimize $\max\{|\hat{\delta}_1|, \dots, |\hat{\delta}_n|\}$
- damper damping coeffs.: discrete design variables
 - chosen among available candidates
 - manufacturing and commercial convenience
 - combinatorial constraints on damper placement
- global optimization
 - mixed integer programming with second-order cone constraints