Symmetry of the Solution of Semidefinite Program by Using Primal-Dual Interior-Point Method

Kyoto University

Y. Kanno, M. Ohsaki and N. Katoh

Semi-Definite Programming (SDP)

- 1. convex programming
- 2. including LP, QP, etc.
- 3. primal-dual interior-point method (IPM)
 - polynomial time convergence
 - practical and fast softwares
- 4. application
 - system and control
 - combinatorial optimization
 - truss optimization
 - fundamental frequency (Ohsaki et al., 1999)
 - linear buckling loads (Kanno *et al.*, 2000)
 - compliance (Ben-Tal and Nemirovski, 1997)

The standard form of SDP:

$$egin{aligned} \mathcal{P}: \min \ oldsymbol{C} ullet oldsymbol{X} \ ext{s.t.} \quad oldsymbol{F}_i ullet oldsymbol{X} = b_i \quad (i = 1, \cdots, m), \ oldsymbol{X} \in \mathcal{S}^n_+; \ \mathcal{D}: \max \ \sum_{i=1}^m b_i y_i \ ext{s.t.} \quad \sum_{i=1}^m oldsymbol{F}_i y_i + oldsymbol{Z} = oldsymbol{C}, \ oldsymbol{Z} \in \mathcal{S}^n_+. \end{aligned}$$

Definitions

 $oldsymbol{U} \in \mathcal{S}^n \iff oldsymbol{U}$ is a real $n \times n$ symmetric matrix $oldsymbol{U} \in \mathcal{S}^n_+ \iff oldsymbol{U} \in \mathcal{S}^n$ is positive semidefinite $oldsymbol{U} \in \mathcal{S}^n_{++} \iff oldsymbol{U} \in \mathcal{S}^n$ is positive definite

Variable matrices and vector

 $oldsymbol{X}\in\mathcal{S}^n, \quad oldsymbol{y}\in\Re^m, \quad oldsymbol{Z}\in\mathcal{S}^n$

Constant matrices and vector

$$oldsymbol{b}\in\Re^m, \quad oldsymbol{C}\in\mathcal{S}^n, \quad oldsymbol{F}_i\in\mathcal{S}^n$$

Inner product

$$\boldsymbol{U} \bullet \boldsymbol{V} = \mathsf{Tr}(\boldsymbol{U}^{\top}\boldsymbol{V}) = \sum_{i=1}^{n} \sum_{j=1}^{n} U_{i,j}V_{i,j}$$

Optimization for Specified Fundamental Frequency

Ground structure method:

• A truss with fixed location of nodes and members.

Fig. 1: Initial truss.

Fig. 2: Optimal solution.

 $oldsymbol{K}$: linear stiffness matrix

 M_s : mass matrix (structural mass)

 M_0 : mass matrix (nonstructural mass)

Optimization Problem:

$$\begin{array}{ll} \min & \sum_{i=1}^{N^m} b_i y_i \\ \text{s.t.} & \Omega_r \geq \bar{\Omega}, \ (r=1,2,\cdots,n), \\ & y_i \geq \underline{y}_i, \ (i=1,2,\cdots,m). \end{array}$$

 $oldsymbol{y} = (y_i)$: member cross-sectional areas $oldsymbol{b} = (b_i)$: member lengths $ar{\Omega}$: specified fundamental eigenvalue

SDP formulation

$$\begin{aligned} \mathcal{D}': \max & -\sum_{i=1}^{m} b_i y_i \\ \text{s.t.} & \sum_{i=1}^{m} (\boldsymbol{K}_i - \bar{\Omega} \boldsymbol{M}_i) y_i + \boldsymbol{Z} = -\bar{\Omega} \boldsymbol{M}_0, \\ & \boldsymbol{Z} \in \mathcal{S}_+^n, \, y_i \geq \underline{y}_i \quad (i = 1, 2, \cdots, m). \end{aligned}$$

 $oldsymbol{K}_i,\ oldsymbol{M}_i$: constant matrices

– Backgrounds: –

- 1. Truss optimization
 - (a) symmetric configuration
 - (b) optimize cross-sectional areas $oldsymbol{y}$
- 2. Question
 - (a) Is the symmetric optimal $ar{m{y}}$ always obtained?
 - (b) symmetry: $\bar{y}_1 = \bar{y}_7$, $\bar{y}_2 = \bar{y}_6$ and $\bar{y}_3 = \bar{y}_5$?
- 3. Experimental results (Ohsaki et al., 1999):
 - (a) solution by IPM is symmetric.
 - (b) solution by SQP is not symmetric.

Fig. 3: A symmetric plane truss.

- Our aim: -

- 1. Theoretical proof
 - (a) Definition of symmetric SDP
 - (b) Symmetry of the central path (CP_{μ})
 - (c) Symmetry of the solution by IPM
- 2. Application—truss optimization

Generalized concept of symmetry

$$x^P = x \iff x$$
 is symmetry w.r.t. P

<u>Definitions</u>

1.
$$S(\Pi_n)$$
 for a vector $oldsymbol{p}=\{p_i\}\in\Re^n$ as $p_i^{S(\Pi_n)}=p_{\Pi_n(i)}.$

2. $Q(\Pi_n, \boldsymbol{e})$ for a matrix $\boldsymbol{A} = [A_{i,j}] \in \Re^{n imes n}$ as

$$A_{i,j}^{Q(\Pi_n,\boldsymbol{e})} = A_{\Pi_n(i),\Pi_n(j)} e_i e_j.$$

 $\Pi_n = \{\Pi_n(i) | i = 1, 2, \cdots, n\}$: a permutation of n indices $1, 2, \cdots, n$ $\boldsymbol{e} = (e_i) \in \Re^n$: $e_i = 1$ or -1.

Symmetry of solution

• For
$$\Pi_m = 7 \ 6 \ \cdots \ 2 \ 1$$
,
 $\boldsymbol{y} = (y_1, y_2, \cdots, y_6, y_7),$
 $\boldsymbol{y}^S(\Pi_m) = (\boldsymbol{y_7}, \boldsymbol{y_6}, \cdots, y_2, y_1).$

Symmetric solution:

• optimal solution $\bar{\boldsymbol{y}}$ satisfying $\bar{\boldsymbol{y}}^S = \bar{\boldsymbol{y}}$.

Standard form of SDP:

$$\mathcal{P}: \min \ oldsymbol{C} ullet oldsymbol{X}$$

s.t. $oldsymbol{F}_i ullet oldsymbol{X} = b_i \ orall i, \ oldsymbol{X} \in \mathcal{S}^n_+;$
 $\mathcal{D}: \max \ \sum_{i=1}^m oldsymbol{b}_i y_i$
s.t. $\sum_{i=1}^m oldsymbol{F}_i y_i + oldsymbol{Z} = oldsymbol{C}, \ oldsymbol{Z} \in \mathcal{S}^n_+.$

Symmetric SDP:

There exist
$$\Pi_m$$
, Π_n and $\boldsymbol{e} \in \Re^n$ such that
 $\boldsymbol{b}^{S(\Pi_m)} = \boldsymbol{b},$
 $\boldsymbol{C}^{Q(\Pi_n, \boldsymbol{e})} = \boldsymbol{C},$
 $\boldsymbol{F}_i^{Q(\Pi_n, \boldsymbol{e})} = \boldsymbol{F}_{\Pi_m(i)}.$

$$\begin{split} \mathcal{D}': \ \max & -\sum_{i=1}^{m} \boldsymbol{b}_{i} y_{i} \\ \text{s.t.} & \sum_{i=1}^{m} (\boldsymbol{K}_{i} - \bar{\Omega} \boldsymbol{M}_{i}) y_{i} + \boldsymbol{Z} = -\bar{\Omega} \boldsymbol{M}_{0}, \\ & \boldsymbol{Z} \in \mathcal{S}_{+}^{n}, \ y_{i} \geq \underline{y}_{i} \quad (i = 1, 2, \cdots, m). \end{split}$$

Symmetry of \mathcal{D}'

— show
$$oldsymbol{b}^S = oldsymbol{b}$$
 and $oldsymbol{K}^Q_i = oldsymbol{K}_{\Pi_m(i)}$

• **b**: member lengths

$$\boldsymbol{b} = (b_1, b_2, \cdots, b_6, b_7),$$

 $\boldsymbol{b}^S = (\boldsymbol{b_7}, \boldsymbol{b_6}, \cdots, b_2, b_1), \text{ for } \Pi_m = 8 \ 7 \ \cdots \ 2 \ 1.$

• configuration is symmetric $\implies \boldsymbol{b}^S = \boldsymbol{b}$

Symmetry of member stiffness matrices K_i :

Fig. 6: A symmetric truss.

Central path of SDP

(CP_{$$\mu$$}) $\boldsymbol{X}\boldsymbol{Z} = \boldsymbol{\mu}\boldsymbol{I}, \quad (\boldsymbol{\mu} > 0)$
 $\boldsymbol{F}_{i} \bullet \boldsymbol{X} = b_{i} \ (i = 1, 2, \cdots, m), \ \boldsymbol{X} \in \mathcal{S}_{++}^{n},$
 $\sum_{i=1}^{m} \boldsymbol{F}_{i} y_{i} + \boldsymbol{Z} = \boldsymbol{C}, \ \boldsymbol{Z} \in \mathcal{S}_{++}^{n}.$

$$\Gamma = \{ (\boldsymbol{X}(\mu), \boldsymbol{y}(\mu), \boldsymbol{Z}(\mu)) : \mu > 0 \}$$

- 1. continuous and smooth path in the feasible region.
- 2. converge to the optimal solution as $\mu \to 0$.
- 3. IPM computes $(\bar{\boldsymbol{X}}, \bar{\boldsymbol{y}}, \bar{\boldsymbol{Z}})$ by tracing (CP_{μ}) as $\mu \to 0$.

Theorem—symmetry of the central path: If the SDP problem is symmetric, then $(\boldsymbol{X}(\mu), \boldsymbol{y}(\mu), \boldsymbol{Z}(\mu)) \in (CP_{\mu})$ is symmetric.

$$(\bar{\boldsymbol{X}}^Q, \bar{\boldsymbol{y}}^S, \bar{\boldsymbol{Z}}^Q) = (\bar{\boldsymbol{X}}, \bar{\boldsymbol{y}}, \bar{\boldsymbol{Z}}).$$

Outline of proof.

- fix μ = μ*.
 suppose (X*, y*, Z*) ∈ (CP_{μ*}).
 then, (X*^Q, y*^S, Z*^Q) ∈ (CP_{μ*}) is obtained.
 from the uniqueness of the solution to (CP_{μ*}), (X*^Q, y*^S, Z*^Q) = (X*, y*, Z*) is obtained.
- \implies optimal solution $(\bar{\boldsymbol{X}}, \bar{\boldsymbol{y}}, \bar{\boldsymbol{Z}}) = (\boldsymbol{X}(0), \boldsymbol{y}(0), \boldsymbol{Z}(0))$ by IPM is symmetric.

Examples: a 5-DOF truss

Compare

- IPM (primal-dual Interior-Point Method)

- SQP (Sequential Quadratic Programming)
- \bullet Elastic modulus: 205.8 GPa, density: 7.86 \times $10^{-3}~kg$
- $\bar{\Omega} = 1000 \text{ rad}^2/\text{s}^2$, $\underline{y}_i = 10.0 \text{ cm}^2$.
- An initial solution \boldsymbol{y}^0 is not symmetric.

	IPM	SQP
Vol. (cm^3)	46615.9	46615.9

Examples: a plane grid arch

algorithm	solution	accuracy	Vol. (cm^3)
IPM	symmetry	(6 digits)	774493.1
SQP	not symmetry	(2 digits)	774592.9

Fig. 12: A plane circular arch grid.

Fig. 13: Symmetric solution by IPM.

Conclusions

- 1. Symmetric SDP has been defined.
- 2. Symmetry of the central path has been proved.
- 3. The optimal solution obtained by a primal-dual interiorpoint method is always symmetric.
- 4. Eigenvalue optimization problem of a symmetric truss configuration has been formulated as symmetric SDP.
- 5. The symmetric solution can be obtained by IPM, where
 - there exists the other optimal solution that is not symmetric.
 - the conventional nonlinear programming approach converges to a solution that is not symmetric.