整数計画を用いた せん断型構造物モデルにおける 粘性ダンパーの最適配置法

寒野 善博

September 1, 2013 2013 年度 日本建築学会大会 最適レギュレーター (linear-quadratic regulator)

[Gluck, Reinhorn, Gluck & Levy '96]

- sequential search algorithm [Shukla & Datta '99] [López García '01]
 (ダンパーを単位量ずつ追加する発見的手法)
- 伝達関数の最小化

[Takewaki '97] [Takewaki & Yoshitomi '98] [Cimellaro '07] [Aydin '12]

● 全応力設計のアナロジー

[Lavan & Levy '06]

最適レギュレーター (linear-quadratic regulator)

[Gluck, Reinhorn, Gluck & Levy '96]

- sequential search algorithm [Shukla & Datta '99] [López García '01(*1)]
 (ダンパーを単位量ずつ追加する発見的手法)
- 伝達関数の最小化

[Takewaki '97(*2)] [Takewaki & Yoshitomi '98] [Cimellaro '07] [Aydin '12]

● 全応力設計のアナロジー

[Lavan & Levy '06(*3)]

- (*1), (*2), (*3)の比較(記録地震波を用いた応答解析)
 [Whittle, Williams, Karavasilis & Blakeborough '12]
 - ほぼ同じ性能:
 最大層間変形,絶対加速度,残留層間変形の減少量は同程度
- 提案: "(*2) & 離散変数"の大域的最適化

(変数は ダンパーの粘性係数)

$$K\boldsymbol{u} + C\dot{\boldsymbol{u}} + M\ddot{\boldsymbol{u}} = -M\ddot{\boldsymbol{u}}_{\rm g}\boldsymbol{1}$$

- $\boldsymbol{u} \in \mathbb{R}^n$: 変位ベクトル(未知数), 図は n = 3
 - *u_i*:第*i*層の変位
- *ü*_g:入力加速度(地震動)

- K: 剛性行列
- *C*: 粘性行列(設計変数 *c_i* に依存)
- M: 質量行列

層間変位の伝達関数の最小化 [Takewaki '97]

• 周波数領域での運動方程式:

$$(K + i\omega C - \omega^2 M) \mathbf{v}(\omega) = -M \ddot{\mathbf{v}}_{g}(\omega) \mathbf{1}$$

- ν(ω): 変位 u の Fourier 変換
- *v*_g(ω): 入力加速度 *ü*_g の Fourier 変換
- 変位の伝達関数: ($\bar{\omega}$ は固有円振動数) $\hat{\mathbf{v}} = \mathbf{v}(\bar{\omega})/\ddot{v}_{g}(\bar{\omega})$
- 層間変位の伝達関数:

$$\hat{\boldsymbol{\delta}} = \boldsymbol{H}^{\mathrm{T}} \hat{\boldsymbol{v}}$$

● 層間変位 は*d* = *H*[⊤]*u* と書ける.

•
$$\sum_{i=1}^{n} |\hat{\delta}_i| \to$$
最小化

層間変位の伝達関数の最小化 [Takewaki '97]

• 最適化問題:

変数は

- *c* ∈ ℝⁿ: ダンパーの粘性係数
- *ŷ* ∈ ℂⁿ: 変位の伝達関数
- $\hat{oldsymbol{\delta}} \in \mathbb{C}^n$:層間変位の伝達関数

離散変数の最適化問題

$$\min \sum_{i=1}^{n} y_i$$

s.t. $y_i \ge \|(\operatorname{Re} \delta_i, \operatorname{Im} \delta_i)\|$
 $\hat{\delta} = H^T \hat{v}$
 $(K + i\bar{\omega}C(c) - \bar{\omega}^2 M)\hat{v} = -M\mathbf{1}$
 $\sum_{i=1}^{n} c_i \le c_{\operatorname{sum}}^{\max}$
 $c_i \in \{0, \bar{c}, 2\bar{c}, \dots, p\bar{c}\} \quad (i = 1, \dots, n)$ (*)

- (♣): 各ダンパーは "0 か *c* の倍数" から選択
 - カタログから選択
 - 小さすぎる(*c* 未満の) 解を除外
 - 大域的最適化の手法を提案

混合整数計画への変換

• 離散変数の導入:

$$x_{ij} \in \{0, 1\}, \quad x_{i1} \ge x_{i2} \ge \cdots \ge x_{ip}$$

• 制約
$$c_i \in \{0, \bar{c}, 2\bar{c}, \dots, p\bar{c}\}$$
 は $c_i = \bar{c} \sum_{j=1}^p x_{ij}$ と書ける.

次の形式の最適化問題に帰着:

$$\min \quad \boldsymbol{f}^{\mathrm{T}}\boldsymbol{x} + \boldsymbol{r}^{\mathrm{T}}\boldsymbol{y} \\ \text{s. t.} \quad ||A_{l}\boldsymbol{x} + G_{l}\boldsymbol{y} - \boldsymbol{b}_{l}|| \leq \boldsymbol{d}_{l}^{\mathrm{T}}\boldsymbol{x} + \boldsymbol{e}_{l}^{\mathrm{T}}\boldsymbol{y} - h_{l} \\ x_{ij} \in \{0, 1\}, \quad \boldsymbol{y} \in \mathbb{R}^{q}$$

- 混合整数2次錐計画
 - $x_{ij} \in \{0, 1\}$ を $0 \le x_{ij} \le 1$ に緩和すると2次錐計画(凸計画)
 - 分枝限定法で解ける(商用/非商用のソルバーあり)

種々の組合せ的な制約

• 離散変数の導入:

$$x_{ij} \in \{0, 1\}, \quad x_{i1} \ge x_{i2} \ge \cdots \ge x_{ip}$$

• 制約
$$c_i \in \{0, \bar{c}, 2\bar{c}, \dots, p\bar{c}\}$$
 は $c_i = \bar{c} \sum_{j=1}^p x_{ij}$ と書ける.

ダンパーを導入する層の数の上限値
 γ

$$\sum_{i=1}^n x_{i1} \leq \gamma$$

種々の組合せ的な制約

• 離散変数の導入:

$$x_{ij} \in \{0, 1\}, \quad x_{i1} \ge x_{i2} \ge \cdots \ge x_{ip}$$

• 制約
$$c_i \in \{0, \bar{c}, 2\bar{c}, \dots, p\bar{c}\}$$
 は $c_i = \bar{c} \sum_{j=1}^p x_{ij}$ と書ける.

• ダンパー量は \bar{rc} 以上から選ぶとき (つまり, $c_i \in \{0, \bar{rc}, (\bar{r}+1)\bar{c}, (\bar{r}+2)\bar{c}, \dots, p\bar{c}\}$)

$$x_{i1} \leq x_{i\bar{r}} \quad (i=1,\ldots,n)$$

•
$$x_{i1} = 1 \Rightarrow x_{i2} = \cdots = x_{i\bar{r}} = 1$$

• $x_{i\bar{r}} = 0 \Rightarrow x_{i1} = \cdots = x_{i,\bar{r}-1} = 0$

種々の組合せ的な制約

• 離散変数の導入:

$$x_{ij} \in \{0, 1\}, \quad x_{i1} \ge x_{i2} \ge \cdots \ge x_{ip}$$

• 制約
$$c_i \in \{0, \bar{c}, 2\bar{c}, \dots, p\bar{c}\}$$
 は $c_i = \bar{c} \sum_{j=1}^p x_{ij}$ と書ける.

隣り合う二つの層に、同時にはダンパーを導入しない

 $x_{i1} + x_{i+1,1} \le 1$ $(i = 1, \dots, n-1)$

隣り合う三つの層の、たかだか一つにしかダンパーを導入しない

 $x_{i1} + x_{i+1,1} + x_{i+2,1} \le 1$ (i = 1, ..., n-2)

数値実験(*n* = 6 層, 剛性が一様)

- 質量 $m_i = 80,000 \text{ kg} (i = 1, \dots, 6)$
- 剛性 $k_i = 40,000 \text{ kN/m} (i = 1,...,6)$
- ダンパーの粘性係数
 - 総和の上限値 $c_{sum}^{max} = 9,000 \, kNs/m$

← 既存研究 [Takewaki '97] の設定

- 離散化:
 - $c_i \in \{0, 500, 1000, \dots, 7500\} \text{ kNs/m}$
 - $c_i \in \{0, 200, 400, \dots, 6000\} \text{ kNs/m}$
 - $c_i \in \{0, 100, 200, \dots, 6000\}$ kNs/m

|最適解(剛性が<u>一</u>様)

ダンパーの粘性係数

解の傾向は 既存研究 [Takewaki '97] と同じ

伝達関数 (剛性が一様)

• 層間変位の伝達関数 $|\hat{\delta}_i|$ ($\bar{\omega}$ における値)

• 特に 下層階で $|\hat{\delta}_i|$ が大きく減少

二つのソルバーで比較

	CPLE>	K (ver. 12.2)	Gurobi (ver. 5.0)	
р	Time (s)	No. of nodes	Time (s)	No. of nodes
15	3.1	25,233	7.7	20,536
30	172.6	837,374	135.2	465,107
60	2,103.5	6,164,308	1,210.9	1,954,957

6-Core Intel Xeon Westmere (2.66 GHz) with 64 GB RAM

- *p* = 60の問題のサイズ
 - 0-1 変数: 360 個
 - 連続変数:402 個
 - 線形の不等式制約:1,615本
 - 線形の等式制約:36本
 - 2 次錐制約: 6 本

組合せ的な制約と最適解(剛性が一様)

- 隣り合う層に、同時にはダンパーを導入しない
- ダンパー数の上限は γ = 3
- ダンパーの粘性係数

数値実験(*n* = 6 層,伝達関数が一様)

- 質量とダンパーの粘性係数の設定はこれまでと同じ
- 剛性の分布 [Takewaki '97]

• ダンパーを一様(つまり、 $c_1 = \cdots = c_6$)に選ぶと、 層間変位の伝達関数 $|\hat{\delta}_i|$ の値が一様(つまり、 $|\hat{\delta}_1| = \cdots = |\hat{\delta}_6|$)

(a) $c_i \in \{0, 100, \dots, 6000\}$ kNs/m

(b) $c_i \in \{0, 200, \dots, 6000\}$ kNs/m

- (a) obj. val. = 0.201158
- (b) obj. val. = 0.201162
- (c) obj. val. = 0.201222
 - 既存研究 obj. val. = 0.2027

- 既存研究の解は すべての層にダンパーを導入
- •離散変数版を解いているが、既存研究の解よりよい解が得られた.

伝達関数

• 層間変位の伝達関数 $|\hat{\delta}_i|$ ($\bar{\omega}$ における値)

• $|\hat{\delta}_i|$ は大きく変わらない

	CPLEX	(ver. 12.2)	Gurobi (ver. 5.0)	
р	Time (s)	No. of nodes	Time (s)	No. of nodes
15	26.3	146,817	16.6	100,999
30	1,455.6	6,158,001	880.6	4,623,129
60	62,021.6	128,500,335	33,917.6	88,934,141
	(≃ 17.2 h)		$(\simeq 9.4 \mathrm{h})$	

6-Core Intel Xeon Westmere (2.66 GHz) with 64 GB RAM

- 整数計画として 難しいデータ と思われる
 - ・層間変位の伝達関数が一様になるように 剛性を決めているから 粘性係数が一様の場合と最適解で 目的関数値の差が小さい

組合せ的な制約の下での最適解

組合せ的な制約の下での最適解

(a) $c_i \in \{0, 100, \dots, 6000\}$ kNs/m

- ダンパーの数の上限値は γ = 3
- 隣り合う層に、同時には
 ダンパーを導入しない

組合せ的な制約の下での最適解

- ダンパーの数の上限値は γ = 2
- 隣り合う層に、同時には
 ダンパーを導入しない

まとめ

- ダンパー配置の最適化
 - せん断型モデル
 - 粘性ダンパーを配置
- 伝達関数の最小化
 - 層間変位の伝達関数の総和/最大値の最小化
- ダンパーの粘性係数が離散値
 - カタログから選ぶ
 - ダンパーを導入する層の数に対する制約
 - •小さすぎるダンパーの導入を防ぐ制約
- 大域的最適化
 - 整数計画による手法