負のポアソン比をもつ周期的な 骨組構造物の最適設計法

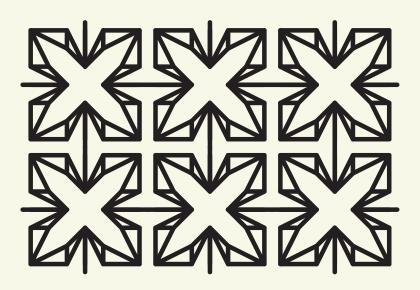
暮田 留依, 寒野 善博

September 4, 2014

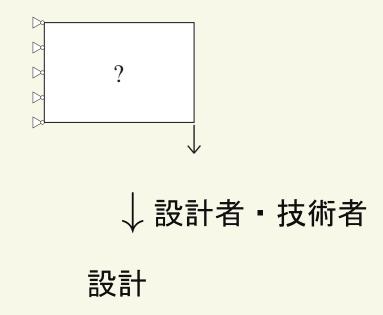
数学協働・JSIAM ワークショップ「数理科学の物質・材料科学への応用」

負のポアソン比をもつ構造物

• … 一つの方向に引っ張ると、直交方向にも広がる.

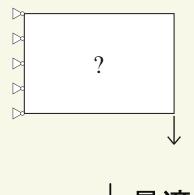


● 従来の構造物の設計法...



- 設計者の長年の経験や勘に依存
 - → 直観に反する構造物の設計は困難
- 設計解が制約を満たせば終了
 - →よりよい設計解の存在に気づかない可能性

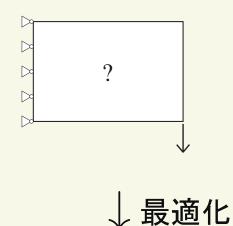
• 構造物の最適設計法(構造最適化)...



最適解

• 例:体積(or 重量)の制約の下で、剛性を最大化

● 構造物の最適設計法(構造最適化)...



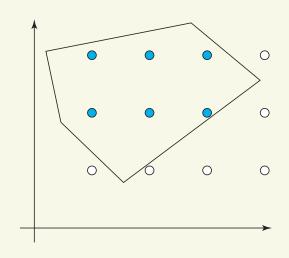
最適解

- 例:体積(or 重量)の制約の下で、剛性を最大化
 - 勘や経験への依存度が小さい(or 依存しない).
 - → 合理的な設計や、直観に反する構造物の探索が可能.

• 本研究で用いる最適化手法

• 整数計画 とは

Minimize $c^{\mathrm{T}}x$ (\$\ldots\$) subject to $a_i^{\mathrm{T}}x \geq b_i$ $(i=1,\ldots,m),$ (\diamondsuit) $x_j \in \{0,1,2,\ldots,k\}$ $(j=1,\ldots,n).$



- (♣):目的関数
- (�): 制約
- $m{x} \in \mathbb{R}^n$: 設計変数(最適化する変数)

• 整数計画 とは

Minimize $c^{\mathrm{T}}x$ (\bigcap) subject to $a_i^{\mathrm{T}}x \geq b_i$ $(i=1,\ldots,m),$ (\diamondsuit) $x_j \in \{0,1,2,\ldots,k\}$ $(j=1,\ldots,n).$

• 0-1 計画:

$$x_j \in \{0, 1\}$$

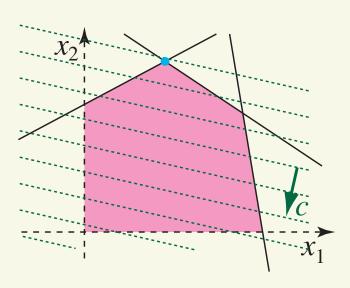
• 整数計画 とは

Minimize $c^{\mathrm{T}}x$ (\bigcap) subject to $a_i^{\mathrm{T}}x \geq b_i$ $(i=1,\ldots,m),$ (\diamondsuit) $x_j \in \{0,1,2,\ldots,k\}$ $(j=1,\ldots,n).$

• 0-1 計画:

$$x_j \in \{0, 1\}$$

- 緩和: $0 \le x_j \le 1$
- 緩和問題 = 線形計画
 - → 整数計画の下界が得られる.



• 混合整数計画:

$$egin{aligned} \min & & oldsymbol{c}^{\mathrm{T}} oldsymbol{x} + oldsymbol{r}^{\mathrm{T}} oldsymbol{y} \ \mathrm{s.\,t.} & & oldsymbol{a}_i^{\mathrm{T}} oldsymbol{x} + oldsymbol{g}_i^{\mathrm{T}} oldsymbol{y} \geq b_i \quad (i=1,\ldots,m), \ & oldsymbol{x} \in \{0,1\}^n, \quad oldsymbol{y} \in \mathbb{R}^l \end{aligned}$$

● "混合":

x_j:整数(離散)変数

y_l: 実数(連続)変数

- 制約 $x \in \{0,1\}^n$ を $0 \le x \le 1$ に緩和すると \rightarrow 線形計画
- 分枝限定法などにより大域的最適解が得られる.
 - → 緩和問題が簡単に解けることがポイント

負のポアソン比(auxetic 性)をもつ材料

• 自然界の例

カドミウム[Li '76]

ヒ素の単結晶 [Gunton & Saunders '72]

• 熱分解黒鉛 [Garber '63]

• 人工物の例

• 泡構造 [Lakes '87]

re-entrant structure

[Friis, Lakes, & Park '88] [Evans, Alderson, & Christian '95]

負のポアソン比(auxetic 性)をもつ材料

- 自然界の例
 - カドミウム[Li '76]
 - ヒ素の単結晶 [Gunton & Saunders '72]
 - 熱分解黒鉛 [Garber '63]
- 人工物の例
 - 泡構造 [Lakes '87]
 - re-entrant structure

[Friis, Lakes, & Park '88] [Evans, Alderson, & Christian '95]

- 応用(の可能性)
 - 調節機能つきフィルタ
 - ファスナ

人工の椎間板

[Alderson et al. '00]

[Choi & Lakes '91]

[Martz, Lakes, Goel, & Park '05]

- 既存の手法:
 - 周期的なトラスとしてモデル化

[Sigmund '94]

• 連続体 & 均質化法

[Larsen, Sigmund, & Bouwstra '97] [Schwerdtfeger et al. '11]

連続体 & 遺伝アルゴリズム [Matsuoka, Yamamoto, & Takahara '01]

- 既存の手法:
 - 周期的なトラスとしてモデル化

[Sigmund '94]

• 連続体 & 均質化法

[Larsen, Sigmund, & Bouwstra '97] [Schwerdtfeger et al. '11]

- 連続体 & 遺伝アルゴリズム [Matsuoka, Yamamoto, & Takahara '01]
- 応力制約 なし
- 解の後処理(解釈)が必要:グレー・スケール&ヒンジ

- 既存の手法:
 - 周期的なトラスとしてモデル化

[Sigmund '94]

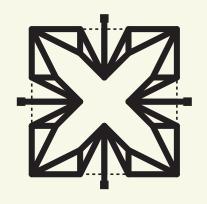
• 連続体 & 均質化法

[Larsen, Sigmund, & Bouwstra '97] [Schwerdtfeger et al. '11]

連続体 & 遺伝アルゴリズム [Matsuoka, Yamamoto, & Takahara '01]

提案手法:

- 周期的な骨組構造
- 応力制約を厳密に考慮
- → 細すぎる部材やヒンジを含まない.



- 既存の手法:
 - 周期的なトラスとしてモデル化

[Sigmund '94]

• 連続体 & 均質化法

[Larsen, Sigmund, & Bouwstra '97] [Schwerdtfeger et al. '11]

連続体 & 遺伝アルゴリズム [Matsuoka, Yamamoto, & Takahara '01]

提案手法:

- 周期的な骨組構造
- 応力制約を厳密に考慮 → 細すぎる部材やヒンジを含まない.
- → 製造のし易さ(後処理が不要)
- → 整数計画による大域的最適化
 - 定式化のアイディア:トラスの最適化手法

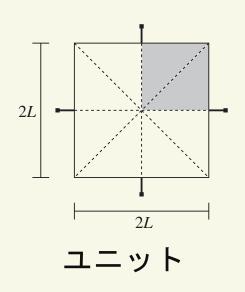
[Rasmussen & Stolpe '08] [K. & Guo '10]

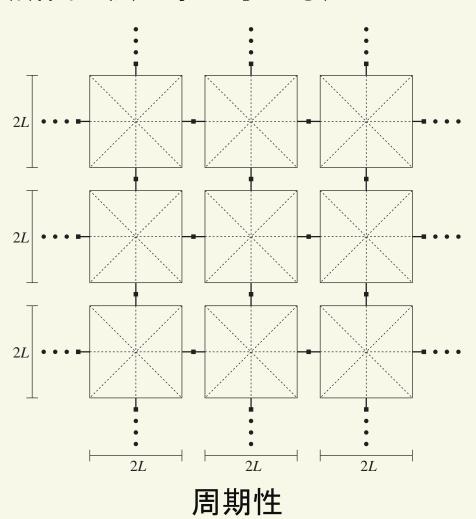
問題設定

• 周期性 & 対称性 を 仮定

• ユニット: 平面 骨組構造

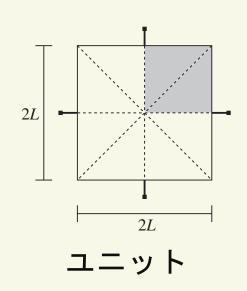
• 設計変数:部材の存在/除去(断面寸法は予め与える)

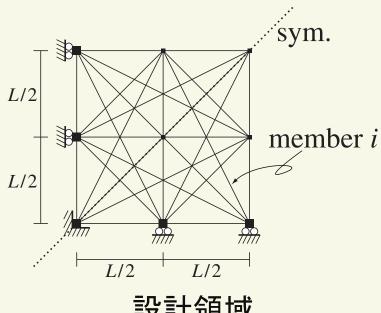




問題設定

- 周期性 & 対称性 を 仮定
- ユニット: 平面 骨組構造
- 設計変数:部材の存在/除去(断面寸法は予め与える)
 - *x_i*:整数変数
 - $x_i = 1 \Rightarrow$ 部材 i が存在
 - $x_i = 0 \Rightarrow$ 部材 i を除去





問題設定

- 周期性 & 対称性 を 仮定
- ユニット: 平面 骨組構造
- 設計変数:部材の存在/除去(断面寸法は予め与える)
 - より 一般に…

"断面寸法のカタログ" =
$$\{\bar{a}_1, \bar{a}_2, \dots, \bar{a}_P\}$$

- $x_{ip} = 1 \Rightarrow$ 部材 i に寸法 \bar{a}_p を採用
- $\underline{x_{i1}} = \cdots = \underline{x_{iP}} = 0 \Rightarrow$ 部材 i を除去

$$\sum_{p} x_{ip} \le 1$$

• "部材iの寸法" $=\sum_{p}x_{ip}\bar{a}_{p}$

最適設計問題

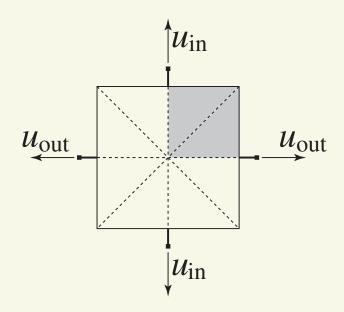
 $\max u_{out}$

s. t. **釣合式**

入力変位 $u_{\rm in}$ を指定

応力制約

交差する部材を除く制約



● → 混合整数計画 (MIP) に帰着

MIP への帰着 (1)

釣合式:

$$Ku = f$$

剛性行列:

$$K = \sum_{i=1}^{m} \sum_{j=1}^{3} k_{ij} \boldsymbol{b}_{ij} \boldsymbol{b}_{ij}^{\mathrm{T}}$$

(b_{ij}: 定ベクトル)

部材の剛性:

$$k_{ij} = \bar{k}_{ij} x_i$$

 $(\bar{k}_{ij}$: 定数)

• 部材の存在を表す 整数変数:

→ これらの制約を線形制約に帰着する.

MIP への帰着 (2)

• 釣合式 $Ku = f \Leftrightarrow$

$$\sum_{i=1}^m \sum_{j=1}^3 \bar{k}_{ij} v_{ij} m{b}_{ij} = m{f}$$
 (内力と外力の関係) $v_{ij} = egin{cases} m{b}_{ij}^{\mathrm{T}} m{u} & \text{if } x_i = 1 \ 0 & \text{if } x_i = 0 \end{cases}$ (適合条件)

• 応力制約:

$$\frac{|q_i(\boldsymbol{u})|}{q_i^{\mathrm{y}}} + \frac{|m_i^{(e)}(\boldsymbol{u})|}{m_i^{\mathrm{y}}} \le 1 \tag{(\clubsuit)}$$

MIP への帰着 (2)

• 釣合式 $Ku = f \Leftrightarrow$

$$\sum_{i=1}^{m}\sum_{j=1}^{3}ar{k}_{ij}v_{ij}m{b}_{ij}=m{f}$$
 (内力と外力の関係) $v_{ij}=egin{cases} m{b}_{ij}^{\mathrm{T}}m{u} & ext{if } x_i=1 \ 0 & ext{if } x_i=0 \end{cases}$ (適合条件)

応力制約:

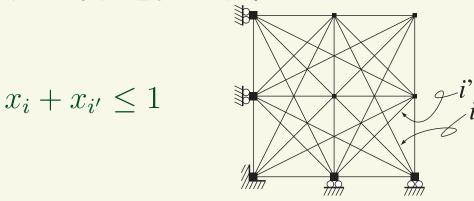
$$\frac{|q_i(\boldsymbol{u})|}{q_i^{\mathrm{y}}} + \frac{|m_i^{(e)}(\boldsymbol{u})|}{m_i^{\mathrm{y}}} \le 1 \tag{(\clubsuit)}$$

•
$$|v_{ij} - \boldsymbol{b}_{ij}^{\mathrm{T}} \boldsymbol{u}| \leq M(1 - x_i)$$
 $(M \gg 0 : 定数)$

得られた定式化

$$\begin{aligned} &\max \quad u_{\text{out}} \\ &\text{s. t.} \quad \sum_{i \in E} \sum_{j=1}^{3} \bar{k}_{ij} v_{ij} \boldsymbol{b}_{ij} = \boldsymbol{f}, \\ &|v_{ij} - \boldsymbol{b}_{ij}^{\text{T}} \boldsymbol{u}| \leq M(1 - x_i), & \forall j, \ \forall i, \\ &\frac{\bar{k}_{i1}}{q_i^{\text{y}}} |v_{i1}| + \frac{l_i}{2} \frac{\bar{k}_{i2}}{m_i^{\text{y}}} |v_{i2}| + \frac{\bar{k}_{i3}}{m_i^{\text{y}}} |v_{i3}| \leq x_{ip}, & \forall i, \\ &x_{ip} \in \{0, 1\}, & \forall i. \end{aligned}$$

交差する部材を除く制約:

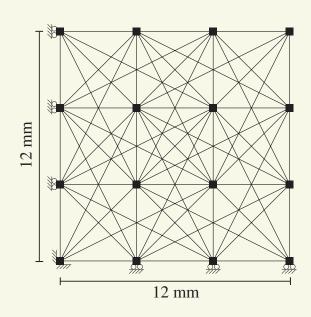


▶ (整数制約 以外は)すべて線形制約

例) MIP を用いた大域的最適化

- 部材の候補は66本
- Timoshenko 梁
- ソルバ:CPLEX ver. 12.2

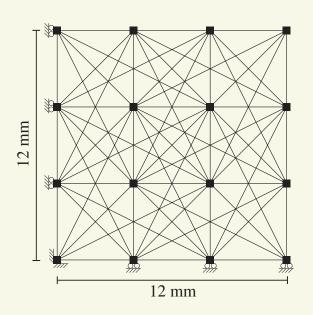
- \bullet 幅×厚さ $=0.5\times0.5\,\mathrm{mm}$
- 幅×厚さ $= 1 \times 0.25 \,\mathrm{mm}$

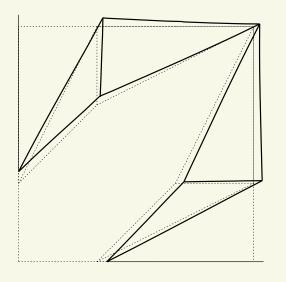


例) MIP を用いた大域的最適化

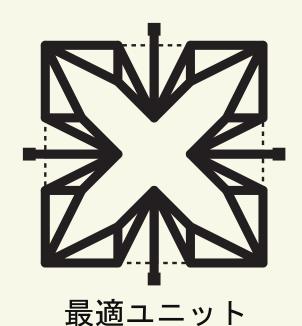
- 部材の候補は 66 本
- Timoshenko 梁
- ソルバ:CPLEX ver. 12.2

- 部材断面は長方形
 - 幅×厚さ = $0.5 \times 0.5 \,\mathrm{mm}$ $\rightarrow \nu = -0.832887$
 - 幅×厚さ = $1 \times 0.25 \,\mathrm{mm}$ $\rightarrow \nu = -0.752017$



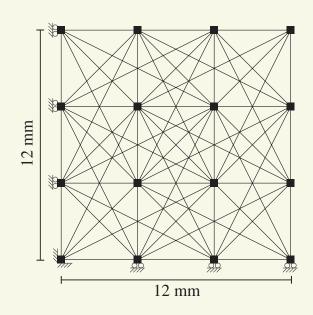


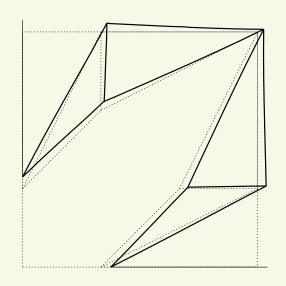
例) MIP を用いた大域的最適化



• 部材断面は長方形

- 幅 × 厚さ = $0.5 \times 0.5 \,\mathrm{mm}$ $\rightarrow \nu = -0.832887$
- 幅 × 厚さ = $1 \times 0.25 \,\mathrm{mm}$ $\rightarrow \nu = -0.752017$



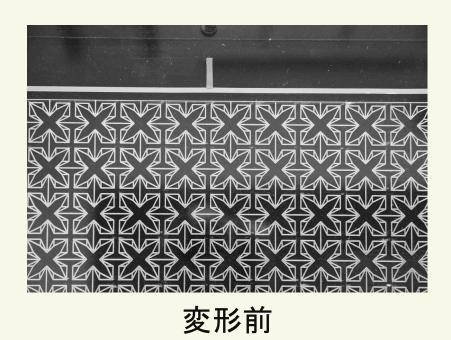


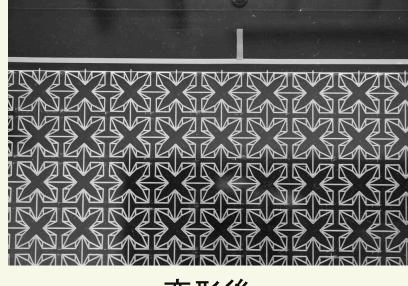
最適解の模型

- フォトエッチング
- ・ステンレス
 - 各部材は 0.5 mm 厚, 0.75 mm 幅

最適解の模型

- フォトエッチング
- ステンレス
 - 各部材は 0.5 mm 厚, 0.75 mm 幅



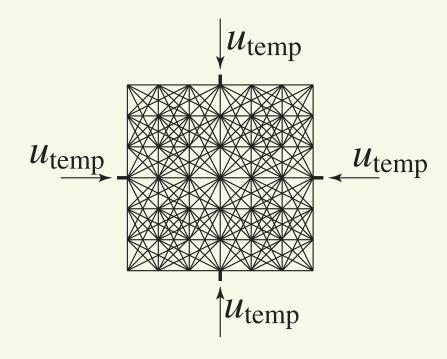


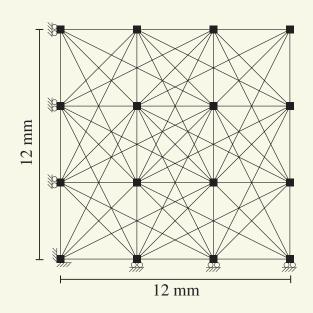
関連する話題:熱膨張率が負の骨組構造

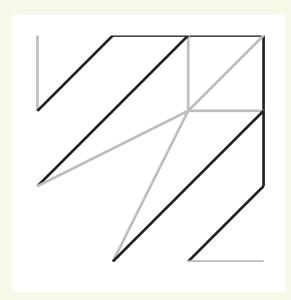
• 二種類の材料 (熱膨張率は正) から選択

関連する話題:熱膨張率が負の骨組構造

- 二種類の材料 (熱膨張率は正) から選択
 - $(x_i, y_i) = (1, 0) \Leftrightarrow$ "部材 i は材料 1"
 - $(x_i, y_i) = (0, 1) \Leftrightarrow$ "部材 i は材料 2"
 - $(x_i, y_i) = (0, 0) \Leftrightarrow$ "部材 i を除去"
- u_{temp} (温度上昇時の変位) $\rightarrow \max$







関連する話題:熱膨張率が負の骨組構造

- 二種類の材料 (熱膨張率は正) から選択
 - $(x_i, y_i) = (1, 0) \Leftrightarrow$ "部材 i は材料 1"

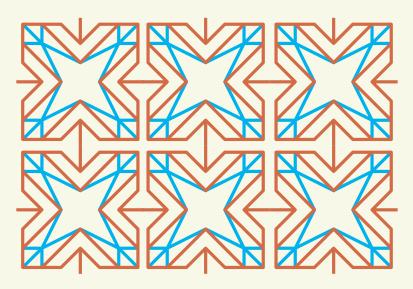
AI: 熱膨張率 大

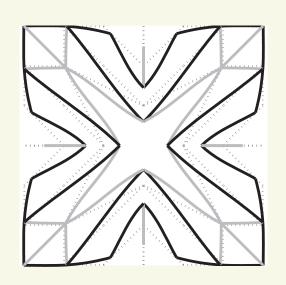
• $(x_i, y_i) = (0, 1) \Leftrightarrow$ "部材 i は材料 2"

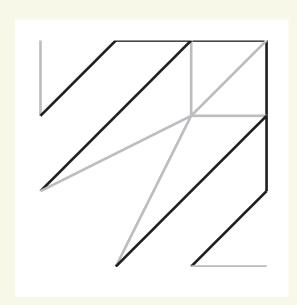
Ti: 熱膨張率 小

• $(x_i, y_i) = (0, 0) \Leftrightarrow$ "部材 i を除去"

• u_{temp} (温度上昇時の変位) $\rightarrow \max$







まとめ

- 直観に反する構造物(材料)の設計
 - → 最適化を用いる手法
- 負のポアソン比をもつ構造物
 - 骨組構造の最適設計問題として定式化
 - 出力変位の最大化
 - 混合整数計画に帰着
 - 部材断面の選択

← 整数変数で記述

- 応力制約を考慮
- 最適解は ヒンジ・細すぎる部材を含まない.
 - 後処理なしで 製造可能

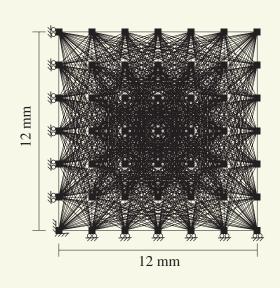
局所探索:大規模な問題を近似的に解く

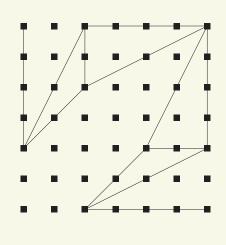
- MIP による最適化手法
 - (大域的な)最適性の保証
 - 大規模な問題では計算時間が膨大に
- MIP を利用した局所探索 [Stolpe & Stidsen '07] [Svanberg & Werme '07]
 - ullet 近傍 $N(oldsymbol{x}^*,r)$ 内でのみ解を探索

$$N(\mathbf{x}^*, r) = \left\{ \mathbf{x} \mid \sum_{i=1}^{m} |x_i - x_i^*| \le r \right\}$$

- r:近傍の半径
- x*:暫定解
- 最適性の保証はない。

例)局所探索

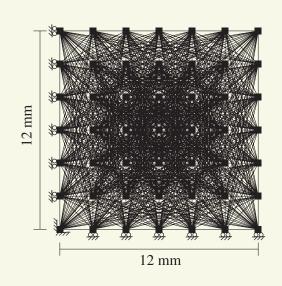


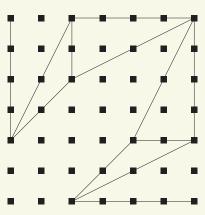


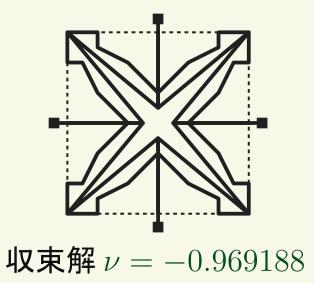
初期解 $\nu = -0.832887$

- 部材の候補:748部材
- 近傍の半径 r = 4
 - 存在/除去 を r 本まで入れ替え可

例)局所探索







• 収束の履歴:

