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Summary: This paper presents a truss topology optimization approach to generating many different tensegrity structures from a given
initial solution. Symmetry of the solutions is implicitly controlled by using a constraint on the number of different member lengths.
The topology optimization problem is solved with the mixed-integer linear programming.

1. Introduction

A tensegrity structureis a free-standing prestressed pin-jointed
structure consisting of a set of discontinuous compressive com-
ponents (struts) interacting with a set of continuous tensile com-
ponents (cables). Many classical tensegrity structures in litera-
ture are kinematically indeterminate; see, e.g., Calladine [1] and
Hanaor and Liao [3]. Those tensegrity structures, therefore, have
infinitesimal mechanism(s). However, they are stabilized by in-
troducing prestress forces. Such a structure is said to beprestress
stable[2].

This paper presents a numerical method for generating many
different tensegrity structures from one initial solution. The
method is based on truss topology optimization. Particular atten-
tion is given to variety of symmetry properties in configurations of
generated tensegrity structures.

One of most difficult constraints in designing tensegrity struc-
tures is the discontinuity condition of struts. Therefore, many ex-
isting form-finding methods require specifying topology, i.e., con-
nectivity relation of cables and struts, of a tensegrity structure as
input data; see, e.g., a survey due to Juan and Mirats Tur [5]. For
exploring new tensegrity structures, however, specifying topology
may be too restrictive. As a method requiring no information of
topology in advance, the author proposed a mixed integer pro-
gramming approach to topology optimization of tensegrity struc-
tures [6, 7]. However, almost all tensegrity structures obtained
by this method are kinematically determinate, i.e., stable. In this
paper we thus use a constraint ensuring simultaneous static and
kinematic indeterminacy [8], that is formulated based upon the
extended Maxwell’s counting rule for rigidity [1, 11]. Numerical
experiments illustrate that prestress stable tensegrity structures are
often obtained by minimizing the total length of cables.

Many studies have been made on finding tensegrity structures
with high symmetry in configurations. In contrast, recent interest
has been drawn for developing versatile numerical methods that
can generate diverse non-symmetric tensegrity structures. This
paper proposes to make use of a constraint on the number of dif-
ferent member lengths to achieve diversity of symmetry proper-
ties of solutions. As this number increases, symmetry of a struc-
ture becomes lower. Therefore, by controlling this parameter we
can generate tensegrity structures with various symmetry proper-
ties from one given initial structure. In other words, symmetry of
solutions is implicitly controlled by this parameter. For instance, if
the number of different member lengths is set equal to the number
of existing members, then it is guaranteed that a tensegrity struc-
ture without symmetry can be obtained.

Concerning symmetry property, in this paper we use two pa-
rameters, the number of different strut lengths and the number
of different cable lengths. Also, the lower bound for the num-
ber of struts is used as the third parameter. The truss topology
optimization problem with this constraint, together with the other

constraints expressing the definition of tensegrity structure [7], is
formulated as amixed-integer linear programming(MILP) prob-
lem. Several well-developed software packages, e.g., CPLEX [4],
are available to solve an MILP problem globally. Unlike the con-
ventional form-finding methods, the locations of nodes are fixed
throughout the proposed method.

2. Integer variables for member labels
We use the conventional ground structure method for truss topol-
ogy optimization to generate tensegrity structures. An initial struc-
ture consists of sufficiently many candidate members. Locations
of the nodes are specified. We useV andE to denote the set of
nodes and the set of candidate members, respectively.

We remove some members from the initial structure to obtain
a tensegrity structure. LetS, C, andN denote the sets of struts,
cables, and removed members, respectively. Topology of a tenseg-
rity structure is determined by finding a partition ofE into disjoint
subsetsE = S∪C∪N. A key idea proposed in Kanno [7, 8] is
making use of integer variables that serve as labels of members.
Specifically, we use two 0–1 variables,xi andyi , to express the
label of memberi as

(xi ,yi) = (1,0) ⇔ i ∈ S, (1a)

(xi ,yi) = (0,1) ⇔ i ∈C, (1b)

(xi ,yi) = (0,0) ⇔ i ∈ N. (1c)

A classical definition of tensegrity structure requires that each
node is connected to at most one strut [10]. This condition, called
thediscontinuity condition of struts, can be expressed in terms of
xi in (1) as

∑
i∈E(vp)

xi ≤ 1, ∀vp ∈V. (2)

Here, E(vp) ⊆ E is the set of indices of the members that are
connected to nodevp ∈ V. Besides, various constraints that are
indispensable in design problem of tensegrity structures can be
formulated in terms ofxi andyi [7, 8]. Particularly, most of classi-
cal tensegrity structures in literature are kinematically indetermi-
nate [1, 3]. To address this issue, a constraint onxi andyi based
upon the modern Maxwell’s counting rule for rigidity [1, 11] can
be used; see Kanno [8] for details.

3. Symmetry constraint
Symmetry of structures often provides both practical and theoret-
ical advantages in applications. It is also related to beauty and
simplicity. In particular, many well-known tensegrity structures
have symmetric configurations such as (semi-)regular polyhedra.
On the other hand, for diversity of tensegrity structures, it is favor-
able that a design space explored by a design method is not limited
to symmetric configurations. Indeed, design methods for finding
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non-symmetric tensegrity structures have gotten much attention
recently [9, 12, 13].

An essential idea for controlling symmetry of a solution is to
specify the number of different member lengths of the solution.
High symmetry in geometry generally implies that the number of
different member lengths is relatively small. In other words, if the
number of different member lengths is large, then the geometry of
the structure has low, or no, symmetry. For instance, if all mem-
bers have different lengths, then it is clear that geometry of the
structure has no symmetry. Therefore, by specifying a large num-
ber of different member lengths as a constraint of the optimization
problem, we obtain an optimal structure with low symmetry.

Let bs andbc denote the number of different strut lengths and
the number of different cable lengths, respectively. We specify
these two parameters in the truss topology optimization problem
that we solve for generating a tensegrity structure. These con-
straints are formulated in terms ofxi andyi as follows.

Let l i denote the length of memberi. We denote byE j ⊆ E
the set of members that have the same member lengths. In other
words, i ∈ E j and i′ ∈ E j meanl i = l i′ . Suppose that the initial
structure hasb different member lengths. Then we obtain a parti-
tion of E into b disjoint subsets:

E = E1∪·· ·∪Eb.

We write B = {1, . . . ,b} for simplicity. Define 0–1 variableszj
( j ∈ B) by

zj =

{
0 if S∩E j = /0,
1 if S∩E j ̸= /0.

(3)

The number of different strut lengths is specified as

∑
j∈B

zj = bs, (4)

wherebs is a specified value. Constraint (3) can be written by
usingxi (i ∈ E) as

zj ≤ ∑
i∈E j

xi , zj ≥
1

|E j | ∑
i∈E j

xi , zj ∈ {0,1}, (5)

where|E j | is the number of members belonging toE j . Thus the
constraint on the number of different strut lengths can be expressed
by (4) and (5), which are handled within the framework of mixed-
integer linear programming.

Similarly, the constraint on the number of different cable
lengths can be formulated using additional 0–1 variables. Define
w j ( j ∈ B)

w j =

{
0 if C∩E j = /0,
1 if C∩E j ̸= /0.

Then the number of different cable lengths is constrained by the
following constraints:

∑
j∈B

w j = bc,

w j ≤ ∑
i∈E j

yi , w j ≥
1

|E j | ∑
i∈E j

yi , w j ∈ {0,1} (∀ j ∈ B),

wherebc is a specified value.
As for the objective function of the optimization problem, we

attempt to minimize the total length of cables. The conditions

Fig. 1: An 18-node initial structure.

required by the definition of tensegrity structure, including kine-
matical indeterminacy, are considered as constraints. Then the op-
timization problem can be formulated as a mixed-integer linear
programming problem; see Kanno [8] for more accounts.

The global optimal solution of a mixed-integer linear pro-
gramming problem can be found by using, e.g., a branch-and-
cut algorithm. Several well-developed software packages, e.g.,
CPLEX [4], are available for solving this optimization problem.

4. Examples

Various tensegrity structures are found by solving the proposed
MILP problem with controlling three parameters, i.e., the lower
bound for the number of struts,s, the number of different strut
lengths,bs, and the number of different cable lengths,bc. The
MILP problem was solved with CPLEX ver. 12.2 [4]. The tol-
erance of integrality feasibility of the solver was set equal to
10−8. The other parameters were set as the default values. The
bounds for prestress forces are given as−200kN≤ qi ≤ −20kN
for struts and 10kN≤ qi ≤ 150kN for cables. To ensure kinemat-
ical indeterminacy of tensegrity structures, we used the constraint
dk −ds = 1 [7], wheredk is the degree of kinematical indetermi-
nacy andds is the degree of statical indeterminacy. Accordingly,
all the tensegrity structures obtained in this section are prestress
stable.

Table 3: Member lengths of tensegrity structures in Figure 4.

Figure 4(a) Figure 4(b)

l i (m) l i (m)

strut 3.00000 ×2 4.85410 ×4
4.85083 ×2 4.97832 ×2
4.85410 ×2 5.26060 ×2
5.26060 ×2 5.40000 ×1

cable 1.52463 ×4 0.54496 ×2
1.78529 ×6 1.52463 ×4
2.70750 ×4 3.00000 ×22
3.00000 ×18 3.54123 ×4
5.40000 ×1 3.81838 ×6
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(a) (b)

(c) (d)

Fig. 2: Tensegrity structures withbs= 2 different strut lengths. (a)(s,bs,bc)= (5,2,3); (b) (s,bs,bc)= (6,2,4); (c) (s,bs,bc)= (7,2,4);
and (d)(s,bs,bc) = (7,2,5).

Table 1: Member lengths of tensegrity structures in Figure 2.

Figure 2(a) Figure 2(b) Figure 2(c) Figure 2(d)

l i (m) l i (m) l i (m) l i (m)

strut 4.85410 ×4 4.85410 ×4 4.85410 ×6 4.85410 ×5
5.40000 ×1 5.52849 ×2 5.40000 ×1 5.52849 ×2

cable 2.80424 ×4 0.54496 ×2 0.54496 ×2 0.54496 ×2
3.00000 ×10 2.80424 ×4 2.80424 ×4 2.46526 ×2
3.27934 ×4 3.00000 ×16 3.00000 ×20 3.00000 ×21

5.70634 ×1 4.97832 ×2 4.85410 ×2
5.40000 ×1

3



(a) (b)

(c) (d)

Fig. 3: Tensegrity structures withbs= 3 different strut lengths. (a)(s,bs,bc)= (7,3,5); (b) (s,bs,bc)= (7,3,6); (c) (s,bs,bc)= (8,3,4);
and (d)(s,bs,bc) = (8,3,6).

(a) (b)

Fig. 4: Symmetric tensegrity structures withbs = 4 different strut lengths. (a)(s,bs,bc) = (8,4,5); and (b)(s,bs,bc) = (9,4,5).
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(a) (b)

(c) (d)

(e)

Fig. 5: Tensegrity structures with asymmetric configurations. (a)(s,bs,bc)= (5,5,8); (b) (s,bs,bc)= (5,5,18); (c) (s,bs,bc)= (6,6,9);
(d) (s,bs,bc) = (7,7,10); and (e)(s,bs,bc) = (9,9,13).
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Figure 1 shows the initial structure. Here,X1 andX2 are taken
to be two horizontal axes andX3 is the vertical axis. The structure
consists of|V| = 18 nodes and|E| = 153 members. The loca-
tions of the nodes of this initial structure are defined as the ver-
tices of regular polyhedra centered at the origin. The 12 nodes are
at vertices of a regular icosahedron with edge length 3m, while
the remaining 6 nodes are at vertices of a regular octahedron with
edge length 2.7

√
2m. Any two nodes are connected by a mem-

ber, although only edges of polyhedra are illustrated in Figure 1.
The number of different member lengths of this initial structure is
|B| = 22. Presence of mutually intersecting members in a tenseg-
rity structure is avoided. More precisely, memberi and memberi′

cannot exist simultaneously if the distance of memberi and mem-
ber i′ is less thanδ = 0.1m. This constraint is also handled within
the framework of MILP [7].

We explore new tensegrity structures by increasing the num-
ber of different strut lengths,bs, form a small value. The solu-
tions obtained by solving MILP problems withbs = 2 are shown
in Figure 2, where the thick lines and the thin lines represent struts
and cables, respectively. The number of different cable lengths,
bc, of each structure is also relatively small. Recall that if the
geometry of a structure has high symmetry, then the number of
different member lengths is small. Lengths of struts and cables
are listed in Table 1. For instance, Figure 2(a) consists of 5 struts
with bs = 2 different lengths and 18 cables withbc = 3 different
lengths. Thus this tensegrity structure involves only 5 different
member lengths. Similarly, the tensegrity structure in Figure 2(c)
involves onlybs+bc = 2+4= 6 different member lengths, while
it has 7 struts and 28 cables. Accordingly, tensegrity structures
shown in Figures 2(a), (b), and (c) have symmetric configurations.
In contrast, the one shown in Figure 2(d) is not symmetric. Thus
the small number of different member lengths does not necessarily
imply high symmetry in configuration.

Figure 3 and Table 2 collect the tensegrity structures obtained
by solving MILP problems withbs = 3. Among these tensegrity
structures, the ones shown in Figures 3(a) and (b) have asymmet-
ric configurations. In contrast, the tensegrity structures in Fig-
ures 3(c) and (d) have symmetric configurations. Figure 4 and Ta-
ble 3 also collect symmetric tensegrity structures. These tensegrity
structures havebs = 4 different strut lengths.

Figure 5 shows asymmetric tensegrity structures. All struts of
each structure have different lengths. It is observed that the large
number of different member lengths implies low, or no, symmetry
in configuration. Thus new asymmetric tensegrity structures can
be found easily by controlling parametersbs and bc in the pro-
posed method.

5. Conclusion

For exploring innovative use of tensegrity structures in real appli-
cations, systematic approaches that can generate diverse tensegrity
structures are desired. This paper has presented an optimization-
based method for generating various topologies of tensegrity struc-
tures that satisfy the classical definition rigorously. A mixed-
integer linear programming has been used for solving the opti-
mization problem.

It has been shown through the numerical experiments that the
proposed method can often find prestress stable tensegrity struc-
tures. Moreover, it can generate many different tensegrity struc-
tures from one initial structure by controlling only three parame-
ters, i.e., the lower bound for the number of struts, the number of
different strut lengths, and the number of different cable lengths.
Also, by controlling the latter two parameters, symmetry in the
configuration of a tensegrity structure is implicitly controlled. It

has been illustrated in the numerical examples that the proposed
method can generate both symmetric and asymmetric tensegrity
structures from one initial symmetric structure.
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Table 2: Member lengths of tensegrity structures in Figure 3.

Figure 3(a) Figure 3(b) Figure 3(c) Figure 3(d)

l i (m) l i (m) l i (m) l i (m)

strut 4.85410 ×3 4.85410 ×3 4.85410 ×4 4.85410 ×4
5.26060 ×2 5.26060 ×2 5.26060 ×2 4.97832 ×2
5.34197 ×2 5.34197 ×2 5.34197 ×2 5.34197 ×2

cable 1.52463 ×4 1.52463 ×4 1.52463 ×4 0.54496 ×2
1.78529 ×4 1.78529 ×4 3.00000 ×22 1.52463 ×4
3.00000 ×15 3.00000 ×16 3.54123 ×6 2.46526 ×2
3.54123 ×4 3.54123 ×2 5.40000 ×1 2.80424 ×4
5.40000 ×1 4.28028 ×1 3.00000 ×20

5.40000 ×1 5.40000 ×1
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