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Summary: This paper presents a truss topology optimization approach to generating many different tensegrity structures from a given
initial solution. Symmetry of the solutions is implicitly controlled by using a constraint on the number of different member lengths.
The topology optimization problem is solved with the mixed-integer linear programming.

1. Introduction constraints expressing the definition of tensegrity structure [7], is

A tensegrity structurds a free-standing prestressed pin-jointi[c? rmuSIated e}s amlllxded-n?teg%r Ilnfttaar progra&nmm@/llLP) CF:)I;?_bE-X 4

structure consisting of a set of discontinuous compressive ¢ - Severalwell-developed sottware packages, e.g., [4],
Are available to solve an MILP problem globally. Unlike the con-

ponents (struts) interacting with a set of continuous tensile co tional form-findi thods. the locati t nod fixed
ponents (cables). Many classical tensegrity structures in lite htional form-finding methods, the locations of nodes are fixe
(Ijoughout the proposed method.

ture are kinematically indeterminate; see, e.g., Calladine [1] a
Hanaor and Liao [3]. Those tensegrity structures, therefore, h@‘."?nteger variables for member labels
infinitesimal mechanism(s). However, they are stabilized by

troducing prestress forces. Such a structure is said firdsress e use th_e c_onventional ground structure method for_tr_u_ss topol-
stable[2] ogy optimization to generate tensegrity structures. Aninitial struc-
o . . ture consists of sufficiently many candidate members. Locations

This paper presents a numerical method for generating magy« nodes are specified. We ueandE to denote the set of

different tensegrity structures from one initial solution. Thgqqas and the set of candidate members respectively.
method is based on truss topology optimization. Particular atteN\va remove some members from the initial structure to obtain

tion is given to variety of symmetry properties in configurations %f tensegrity structure. L& C, andN denote the sets of struts,

generated tensegrity structures. o . cables, and removed members, respectively. Topology of a tenseg-
One of most difficult constraints in designing tensegrity Strugiy structure is determined by finding a partition®fnto disjoint

tures is the discontinuity condition of struts. Therefore, many exgpset€ = SUCUN. A key idea proposed in Kanno [7, 8] is

isting form-finding methods require specifying topology, i.e., Cofnaking use of integer variables that serve as labels of members.

nectivity relation of cables and struts, of a tensegrity structure gsecifically, we use two 0—1 variables, andy;, to express the
input data; see, e.g., a survey due to Juan and Mirats Tur [S]. EHe| of member as

exploring new tensegrity structures, however, specifying topology

may be too restrictive. As a method requiring no information of x,¥i)=(L,0) & ieS (1a)
topology in advance, the author proposed a mixed integer pro- X.y)=(01) < ieC (1b)
gramming approach to topology optimization of tensegrity struc- e ’ ) ’

tures [6, 7]. However, almost all tensegrity structures obtained (%,¥1)=(0,0) < ieN. (1c)

by this method are kinematically determinate, i.e., stable. In this

paper we thus use a constraint ensuring simultaneous static ar@ classical definition of tensegrity structure requires that each

kinematic indeterminacy [8], that is formulated based upon t Que IS connepted to ‘."l.t most one strut [10]. This conFiltlon, called
extended Maxwell's counting rule for rigidity [1, 11]. Numericaf ediscontinuity condition of strutcan be expressed in terms of

experiments illustrate that prestress stable tensegrity structure<al’d (1) as
often obtained by minimizing the total length of cables.

Many studies have been made on finding tensegrity structures
with high symmetry in configurations. In contrast, recent interest
has been drawn for developing versatile numerical methods thgfre, E(vp) C E is the set of indices of the members that are
can generate diverse non-symmetric tensegrity structures. Td¥finected to node, € V. Besides, various constraints that are
paper proposes to make use of a constraint on the number of @ifispensable in design problem of tensegrity structures can be
ferent member lengths to achieve diversity of symmetry prop@srmulated in terms o andy; [7, 8]. Particularly, most of classi-
ties of solutions. As this number increases, symmetry of a striggy tensegrity structures in literature are kinematically indetermi-
ture becomes lower. Therefore, by controlling this parameter wate [1, 3]. To address this issue, a constrainkcandy; based

can generate tensegrity structures with various symmetry propgion the modern Maxwell’s counting rule for rigidity [1, 11] can
ties from one given initial structure. In other words, symmetry ¢fe used; see Kanno [8] for details.

solutions is implicitly controlled by this parameter. For instance, if

the number of different member lengths is set equal to the numBeSymmetry constraint

of existing members, then it is guaranteed that a tensegrity str@gmmetry of structures often provides both practical and theoret-

ture without symmetry can be obtained. ical advantages in applications. It is also related to beauty and
Concerning symmetry property, in this paper we use two psimplicity. In particular, many well-known tensegrity structures

rameters, the number of different strut lengths and the numibave symmetric configurations such as (semi-)regular polyhedra.

of different cable lengths. Also, the lower bound for the nun®n the other hand, for diversity of tensegrity structures, it is favor-

ber of struts is used as the third parameter. The truss topol@dpfe that a design space explored by a design method is not limited

optimization problem with this constraint, together with the othéo symmetric configurations. Indeed, design methods for finding

g X <1l VvpeV @)
i€E(vp)



non-symmetric tensegrity structures have gotten much attention
recently [9, 12, 13].

An essential idea for controlling symmetry of a solution is to
specify the number of different member lengths of the solution.
High symmetry in geometry generally implies that the number of
different member lengths is relatively small. In other words, if the
number of different member lengths is large, then the geometry of
the structure has low, or no, symmetry. For instance, if all mem-
bers have different lengths, then it is clear that geometry of the
structure has no symmetry. Therefore, by specifying a large num-
ber of different member lengths as a constraint of the optimization
problem, we obtain an optimal structure with low symmetry.

Let bs andb; denote the number of different strut lengths and
the number of different cable lengths, respectively. We specify
these two parameters in the truss topology optimization problem -
that we solve for generating a tensegrity structure. These con- X2
straints are formulated in terms xgfandy; as follows. X,

Let l; denote the length of member We denote byg; C E
the set of members that have the same member lengths. In other
words,i € Ej andi’ € E; meanl; = ly. Suppose that the initial
structure hag different member lengths. Then we obtain a parti-
tion of E into b disjoint subsets:

Fig. 1: An 18-node initial structure.

required by the definition of tensegrity structure, including kine-
E=EU---UEy,. matical indeterminacy, are considered as constraints. Then the op-
timization problem can be formulated as a mixed-integer linear
We write B = {1,...,b} for simplicity. Define 0-1 variablegj programming problem; see Kanno [8] for more accounts.
(i€B)by The global optimal solution of a mixed-integer linear pro-
gramming problem can be found by using, e.g., a branch-and-

~_JO ifSNE; =0, 3 out algorithm. Several well-developed software packages, e.g.,
7)1 ifsn Ej #0. CPLEX [4], are available for solving this optimization problem.
The number of different strut lengths is specified as 4. Examples
Various tensegrity structures are found by solving the proposed
ngZj = bs, @) miLp problem with controlling three parameters, i.e., the lower

bound for the number of struts, the number of different strut

wherebs is a specified value. Constraint (3) can be written d§ngths,bs, and the number of different cable lengthg, The

usingx; (i €E) as MILP problem was solved with CPLEX ver. 12.2 [4]. The tol-

erance of integrality feasibility of the solver was set equal to

10-8. The other parameters were set as the default values. The

bounds for prestress forces are given-@)0kN < g < —20kN

for struts and 10kN< g < 150kN for cables. To ensure kinemat-

where|Ej| is the number of members belongingEp. Thus the ical indeterminacy of tensegrity structures, we used the constraint

constraint on the number of different strut lengths can be expres8ed- ds = 1 [7], wheredy is the degree of kinematical indetermi-

by (4) and (5), which are handled within the framework of mixediacy andds is the degree of statical indeterminacy. Accordingly,

integer linear programming. all the tensegrity structures obtained in this section are prestress
Similarly, the constraint on the number of different cablgtable.

lengths can be formulated using additional 0—1 variables. Define

1
Zj< Y % zjz ==y % {01} (5)
iEE; [Ejl 4 i

wj (j€B)
) Table 3: Member lengths of tensegrity structures in Figure 4.
~_Jo ifcngj=0,
71 ifcnE #£o0. Figure 4(a) Figure 4(b)
. , : li (m) li (m)
Then the number of different cable lengths is constrained by the
following constraints: strut 300000 x2 4.85410 x4
485083 x2 497832 x2
EBWJ' = b, 485410 x2 526060 x2
1€ L 526060 x2 540000 x1
wi< Sy, owy > B vi, wje{0,1} (VjeB), cable 152463 x4 054496 x2
i€E; ITieg 1.78529 x6 152463 x4

270750 x4 300000 x22
3.00000 x18 354123 x4
540000 x1 381838 x6

whereby is a specified value.
As for the objective function of the optimization problem, we
attempt to minimize the total length of cables. The conditions
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Fig. 2: Tensegrity structures witlhy = 2 different strut lengths. (&}, bs,bc) = (5,2,3); (b) (s,bs,be) = (6,2,4); (c) (s,bs,be) = (7,2,4);
and (d)(37 b57 bC) = (77 27 5)

Table 1: Member lengths of tensegrity structures in Figure 2.

Figure 2(a) Figure 2(b) Figure 2(c) Figure 2(d)
li (m) li (m) li (m) li (m)

strut 485410 x4 485410 x4 485410 x6 485410 x5
540000 x1 552849 x2 540000 x1 552849 x2

cable 280424 x4 054496 x2 054496 x2 054496 x2
3.00000 x10 280424 x4 280424 x4 246526 x2
327934 x4 300000 x16 300000 x20 300000 x21
570634 x1 497832 x2 485410 x2

540000 x1
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Fig. 3: Tensegrity structures witly = 3 different strut lengths. (d},bs,bc) = (7,3,5); (b) (s,bs,bc) = (7,3,6); (c) (s,bs, be) = (8,3,4);
and (d)(sa b57 bC) = (8’ 37 6)

(@) (b)

Fig. 4: Symmetric tensegrity structures with= 4 different strut lengths. (g, bs,bc) = (8,4,5); and (b)(s,bs,bc) = (9,4,5).
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Fig. 5: Tensegrity structures with asymmetric configurations(&}, bc) = (5,5, 8); (b) (s, bs,bc) = (5,5,18); (¢) (s, bs, be) = (6,6,9);
(d) (s,bs,be) = (7,7,10); and (e)(s, bs,bc) = (9,9,13).



Figure 1 shows the initial structure. Hebg, andX, are taken has been illustrated in the numerical examples that the proposed
to be two horizontal axes ant} is the vertical axis. The structuremethod can generate both symmetric and asymmetric tensegrity
consists offV| = 18 nodes andE| = 153 members. The loca-structures from one initial symmetric structure.
tions of the nodes of this initial structure are defined as the ver-
tices of regular polyhedra centered at the origin. The 12 nodes At&nowledgments
at vertices of a regular icosahedron with edge length 3m, whifgjs work is partially supported by Grant-in-Aid for Scientific Re-
the remaining 6 nodes are at vertices of a regular octahedron vé#arch (C) 23,560,663, from JSPS and by the Aihara Project, the

edge length Zv/2m. Any two nodes are connected by a meng|RST program from JSPS, initiated by CSTP.
ber, although only edges of polyhedra are illustrated in Figure 1.
The number of different member lengths of this initial structure |
|B| = 22. Presence of mutually intersecting members in a tensgge_ferences
rity structure is avoided. More precisely, memband membei’
cannot exist simultaneously if the distance of memilz@rd mem-
beri’ is less tha® = 0.1 m. This constraint is also handled within
the framework of MILP [7].

We explore new tensegrity structures by increasing the num-

ber of different strut lengthsys, form a small value. The solu- [2] Connelly, R., Whiteley, W.: Second-order rigidity and pre-

tions obtained by solving MILP problems witl = 2 are shown stress stability for tensegrity framework3lAM Journal on
in Figure 2, where the thick lines and the thin lines represent struts - pjscrete Mathematics, 453-491 (1996).

and cables, respectively. The number of different cable lengths,

be, of each structure is also relatively small. Recall that if thg3] Hanaor, A., Liao, M.-K.: Double-layer tensegrity grids:
geometry of a structure has high symmetry, then the number of static load response. Part I: analytical studgurnal of
different member lengths is small. Lengths of struts and cables Structural Engineering (ASCE)}17, 1660-1674 (1991).

are listed in Table 1. For instance, Figure 2(a) consists of 5 struts

with bs = 2 different lengths and 18 cables with = 3 different  [4] IBM  ILOG: Users  Manual  for  CPLEX
lengths. Thus this tensegrity structure involves only 5 different  http://www.ilog.com/ (2012).

member lengths. Similarly, the tensegrity structure in Figure 2(('[)5]
involves onlybs +be = 2+ 4 = 6 different member lengths, while analysis reviewMechanism and Machine Theo#3, 859—
it has 7 struts and 28 cables. Accordingly, tensegrity structures 881 (2008)

shown in Figures 2(a), (b), and (c) have symmetric configurations. '

In contrast, the one shown in Figure 2(d) is not symmetric. Thu Kanno, Y.: Topology optimization of tensegrity structures
the small number of different member lengths does not necessarily nder self-weight loadgournal of the Operations Research

imply high symmetry in configuration. Society of Japarb5, 125-145 (2012).
Figure 3 and Table 2 collect the tensegrity structures obtained
by solving MILP problems witths = 3. Among these tensegrity [7] Kanno, Y.: Topology optimization of tensegrity structures
structures, the ones shown in Figures 3(a) and (b) have asymmet- under compliance constraint: a mixed integer linear pro-
ric configurations. In contrast, the tensegrity structures in Fig- gramming approactOptimization and Engineerind.4, 61—
ures 3(c) and (d) have symmetric configurations. Figure 4 and Ta- 96 (2013).
ble 3 also collect symmetric tensegrity structures. These tensegritgl ) ] o
structures havbs = 4 different strut lengths. [8] Kanno, Y.: Exploring new tensegrity structures via mixed
Figure 5 shows asymmetric tensegrity structures. All struts of ~intéger programmingStructural and Multidisciplinary Op-
each structure have different lengths. It is observed that the large timization to appear.
.numbe.r ofdlfferent member lengths |mp||es low, orno, symmetr 9] Li, Y., Feng, X.-Q., Cao, Y.-P., Gao, H.. A Monte Carlo
in configuration. Thus new asymmetric tensegrity structures c o i
be found easily by controlling parametdss and b in the pro- form-finding method for large scale regular and irregular
¢ tensegrity structuresnternational Journal of Solids and

posed method. Structures47, 1888—1898 (2010).
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Table 2: Member lengths of tensegrity structures in Figure 3.

Figure 3(a) Figure 3(b) Figure 3(c) Figure 3(d)
li (m) li (m) li (m) li (m)

strut 485410 x3 4.85410 x3 485410 x4 485410 x4
526060 x2 526060 x2 526060 x2 497832 x2
534197 x2 534197 x2 534197 x2 534197 x2
cable 152463 x4 152463 x4 152463 x4 054496 x2
178529 x4 178529 x4 300000 x22 152463 x4
3.00000 x15 300000 x16 354123 x6 246526 x2
354123 x4 354123 x2 540000 x1 280424 x4
540000 x1 428028 x1 3.00000 x20
540000 x1 540000 x1




