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OPTIMAL INVENTORY POLICY' 

By KENNETH J. ARROW, THEODORE HARRIS, AND JACOB MARSCHAK2 

Optimal inventory policy is first derived for a simple model in which 
the future (and constant) demand flow and other relevant quantities are 
known in advance. This is followed by the study of uncertainty models- 
a static and a dynamic one-in which the demand flow is a random vari- 
able with a known probability distribution. The best maximum stock 
and the best reordering point are determined as functions of the demand 
distribution, the cost of making an order, and the penalty of stock de- 
pletion. 

1. INTRODUcrION 

WE ipropose to outline a method for deriving optimal rules of inventory 
policy for finished goods. The problem of inventories exists not only 
for business enterprises but also for nonprofit agencies such as govern- 
mental establishments and their various branches. Moreover, the con- 
cept of inventories can be generalized so as to include not only goods 
but also disposable reserves of manpower as well as various stand-by 
devices. Also, while inventories of finished goods present the simplest 
problem, the concept can be extended to goods which can be trans- 
formed, at a cost, into one or more kinds of finished goods if and when 
the ~need for such goods arises. The following notes prepare the way for 
a more general future analysis of "flexible planning." 

We shall call "net utility" the quantity that the policymaker seeks 
to maximize. In the case of profit-making enterprises this is conven- 
iently approximated by profit: the difference between gross money 
revenue and money cost. A nonprofit agency such as a hospital may often 
be able to compute directly its money cost, and has to assign an ap- 
proximate monetary value to the "gross utility" of the performance of 
its tasks; it corresponds to the "gross revenue" of an enterprise run for 
profit.3 

1 This paper was prepared in the summer of 1950 at the Logistics Conference 
of The RAND Corporation, Santa Monica, California. It will be reprinted as 
Cowles Commission Paper, New Series, No. 44. 

2 The authors express gratitude for remarks and criticism of staff members of 
the Cowles Commission for Research in Economics and, in particular, for detailed 
and helpful comments and suggestions by Gerard Debreu. Criticisms by Herbert 
A. Simon, Carnegie Institute of Technology, and discussions with Allen Newell, 
of The RAND Corporation, and with Joyce Friedman, Joseph Kruskal, and C. B. 
Tompkins, of the Office of Naval Research Logistics Project, George Washington 
University, have also proved stimulating. 

The authors regret that the important work of Pierre Mass [11 did not come 
to their attention before this article was completed. 

3The head of a nonprofit organization, just like the head of a household, has 
to arrange the outcomes of alternative actions in the order of his preferences. 
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OPTIMAL INVENTORY POLICY 251 

The net utility to any policymaker is, in general, a random variable 
depending on certain conditions (i.e., on variables or on relations be- 
tween variables). Some of these conditions he can control, others he 
cannot. The former are policy means (rules of action, strategies). The 
noncontrolled conditions are, in general, defined by a joint probability 
distribution of certain variables. Rational policy consists in fixing 
the controlled conditions so as to maximize the expected value of net 
utility, given the probability distribution of noncontrolled conditions. 
When this probability distribution degenerates into a set of nonrandom 
variables we have the case of "certainty." In this limiting case, net 
utility itself is a nonrandom variable, to be maximized by the policy- 
maker. 

In the present paper, the policymaker is the holder of inventories. 
At most one of the noncontrolled conditions will be regarded as a random 
one: the rate of demand for the policymaker's product. Other non- 
controlled conditions will be regarded as constants, or as relations with 
constant parameters: the pipeline time; the cost of making an order; 
the relation between storage cost and the size of inventory; the price 
paid or its relation to the size of order (the "supply function"); the gross 
revenue (or, more generally, the gross utility) obtained. (Speculative 
inventories are thus excluded from consideration.) 

As to controlled conditions, we shall assume that the policymaker 
can control only the size of the orders he makes (at discrete points of 

Moreover, if choices can be made between alternative "lotteries," each char- 
acterized by a different probability distribution of outcomes, then-as proved 
by von Neumann and Morgenstern [1]-numerical "utilities" can be assigned to 
the outcomes in such a way that the chosen lottery is the one with the highest 
expected utility. 

An important problem arises as to the decisions of a sub-agency of a profit 
or nonprofit organization. The head of a sub-agency has to take decisions that 
would maximize expected utility or revenue not to himself but to the superior 
organization. He cannot calculate the effect of his action upon this utility or 
revenue because he does not know the actions of other sub-agencies. However, the 
superior organization can, instead, inform its subordinates of a certain set of 
"intrinsic prices." This set has the following property: If each sub-agency maxi- 
mizes its "net revenue" computed in those "prices" (i.e., if it maximizes the 
algebraic sum of inputs and outputs, present or future, each multiplied by its 
"price"), then the utility for the superior organization is also maximized. The 
ratios between any two "intrinsic prices" are equal to the ratios at which the 
corresponding in- or outputs can be substituted for each other without making 
the superior organization worse off (its resources and technology being given). 
See Koopmans [1, 2], Debreu [1]. 

Whenever direct monetary calculation appears not to be feasible, we shall, 
throughout this paper, use the words "utility" and "revenue" as interchange- 
able; the "revenue" of a sub-agency being understood to be computed at the 
"intrinsic prices" set up by the superior organization. 
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252 K. J. ARROW, T. HARRIS, AND J. MARSCHAK 

time). This eliminates, for example, such policy means as the fixing of 
the selling price, or the use of advertising, to influence demand, and 
any bargaining with buyer(s) or competitor(s). 

We believe our specialized formulation is a workable first approxi- 
mation. By regarding the order size as the only controlled condition, 
and the demand as the only random noncontrolled condition, we do 
take account of most of the major questions that have actually arisen 
in the practice of business and nonprofit organizations.4 

2. THE CASE OF CERTAINTY 

2 :A. Let x be the known constant rate of demand for the product of 
the organization, per unit of time. Let the gross utility (i.e., utility 
before deducting cost) obtained by the organization through satisfying 
this demand be, per unit of time, 

ax + an. 

With a nonprofit organization, ao expresses the value of its "being" 
(word coined for the British Navy). If the organization is a commercial 
firm, a is the selling price; otherwise a is the value to the organization of 
a unit of its operations. In general, a is a function of x. It will be suf- 
ficient, for our purposes, to assume a constant, and ao = 0. Denote by 
b = b(q) the purchasing price of one unit when the size of order is q. 
We shall assume that q-b(q) is an increasing function of q, and that 
b'(q) < 0 (possible economy of large scale orders). Let K be the cost of 
handling an order, regardless of its size. Let the cost of carrying a stock 
z over one unit of time be 

co + 2cz, 

where co is the overhead cost of storage. In general, co varies with the 
maximum amount stocked, and c varies with the current stock z and 
also (because of spoilage, leakage, and obsolescence) with the prices 
paid. However, we shall assume co and c constant. 

2: B. With K positive a continuous flow of orders would be infinitely 
expensive. Hence orders will be given at discrete time intervals. Let the 
first ordering date be 0. Let the length of the ith time interval be 0 i. 
Then the delivery during that interval is xOi. See Figure la, where the 
common slope of all slanting lines is the demand flow, x. 

We shall show that, under certain conditions, optimal policy will be 

4Before formulating the problem, a study was made of the existing business 
literature on inventory control, using freely the comprehensive bibliographies 
that were compiled by T. H. Whitin [11 of Princeton University, and by Louise 
B. Haack [11 of George Washington University, for projects of the Office of Naval 
Research at those universities. 
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OPTIMAL INVENTORY POLICY 253 

as shown in Figure lb: the intervals, possibly excepting the first one, 
will have the same optimal length and the same optimal highest and 
lowest stock levels. 

z z 

yo y2 

YOX 

el 02 83 TIME TIME 

FIGURE la FIGURE lb 

We shall first assume that orders are fulfilled immediately. Then the 
amount ordered at the beginning of the ith interval, 

qi = Si - Yi_ 0, 

where Si-i and Yi-I denote, respectively, the stocks available at the 
beginning of the ith interval after and before the replenishment. 
Since the delivery during that interval is 

Xoi = Si-i -Yi 

therefore 

(2.1) qi = xOi + y -y (iy= 1, 2, ...), 

while the average stock during the ith interval is 

(2.2) 2i = (Si-, + yi)/2 = (xOj + 2yi)/2 (i = 1, 2, *-*). 

The net utility achieved during the ith interval (not allowing for a time 
discount) is 

(2.3) u(Oj) = axOi - qi b(qi) - 2c2jOj - K. 

By (2.1), (2.2), this is a decreasing function of yi > 0. Hence, for given 
Oi and Yi-I, u(Oj) has its maximum when yi = 0. Further, we can put 
yo = 0: if the agency begins its operations with a stock y' > 0, its best 
policy is not to place orders till the stock runs down to zero, y'/x time 
units later; and this time point can be regarded as the origin. Then, 
by (2.3), u(01) is largest, for a given O1 , when y' = 0; and for any given 
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254 K. J. ARROW, T. HARRIS, AND J. MXRSCHAK 

sequence of interval lengths 01, * * , 0,a, the sum U In 
u(0j) will 

have its maximum at y, = * = yn = 0. 

Suppose the agency maximizes the sum of utilities over a certain 
given time T, neglecting any discounting for time. That is, it maximizes 
U = * u(0@) (where O 0i = T), and therefore maximizes the average 
utility over time, U/T = El 0v(0j)/1 0i, where v(0j) = u(0j)/0j. 
We have seen that this requires yi = 0 (i = 1, 2, ) for any given 
sequence of the 0i. Furthermore U/T, being the weighted average of 
the v(0 ), reaches its maximum when every v(0 ) is equal to maxe, v(0 ) 
v(0*), say. But, by (2.1)-(2.3) (with yi = 0, i ) 0), 

(2.4) v(8) = ax - [xb(xO) + cxO + K8] = ax -C(), 

the expression in square brackets being the total cost per time unit, 
C(0). If v(8) has a maximum and C(8) has a minimum at 0 = 0*, then 

(2.5) C'(0*) = 0 = x2b'(xO*) + cx -K/(*)2. 

The optimal interval 0* between orders can thus be computed as depend- 
ing on the cost parameters, c and K, and the purchasing price function, 
b(q)-provided the policymaker maximizes the sum of utilities over 
time, U, without any discounting for futurity during which the initial 
stock will last. 

We obtain thus (as in Figure lb), for the case in which orders are 
fulfilled immediately (pipeline time = 0), a periodically repeated 
change from maximum stocks 

(2.6) S* = xo* 

to minimum stocks 

y = 0, 

where the period, 0*, satisfies (2.5). 
2:C. We shall assume the purchase price function linear, so that 

b"(q) = 0 identically and 

b(q) = -bo bq, 

say, with bi ) 0. Then, by (2.5), 

(2.7) 0* = K/x(c-b1x). 

It is seen from the second-order conditions for maximum v(8) in (2.4) 
that the expression under the root sign is al'ways positive (i.e., there 
would be no positive and finite optimum storage period if the ordering 
of one more unit decreased the price of the commodity by more than it 
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OPTIMAL INVENTORY POLICY 255 

increased the cost of storing one unit). Using (2.6), the optimal maximum 
stock is 

(2.8) S* = VKx/(c-bix). 

Hence, as should be expected, the optimal order size, and therefore the 
optimal ordering interval, is larger, the larger the cost K of handling an 
order, the smaller the unit (marginal) storage cost c, and the larger the 
effect b1 of the size of order upon the unit price. 

We believe this is, in essence, the solution advanced by R. H. Wilson 
[1-4], formerly of the Bell Telephone Company, and also by other 
writers; see Alford and Banks [1]. We have proved the validity of 
Figure lb (usually accepted intuitively) and have shown how to evaluate 
the optimal storage period. 

2: D. If we now introduce a constant pipeline time, r > 0, elapsing 
between order and delivery, this will not affect S* or 0*, but the time 
of issuing the order will be shifted r time units ahead. The order will 
be issued when the stock is reduced, not to zero, but to XT units. 

2:E. The policymaker may not have full control of the length of the 
time interval between any two successive orders. Transportation 
schedules or considerations of administrative convenience may be such 
as to make ordering impossible at intervals of length other than, say, 
QO 0 0*. For example, 00 may be one business day or week, or it may 
be the period between two visits of a mail boat to an island depot. 00 
is thus the "scheduled" or "smallest feasible" period between two non- 
zero orders. Denote the "best feasible period" by 0', an unknown 
multiple integer of 00. As before, 0* is the best (but possibly a non- 
feasible) period. By considering the expression C(8) defined in (2.4) as 
total cost, one finds easily that: (1) if 00 > 0*, then 0' = 00; (2) if 0* > 00, 
then 0' = 0*, provided 0* is an integer multiple of 00; (3) if 0* is larger 
than 00 but is not an integer multiple of 00, then define the integer 
in < 0*/00 < A + 1; the best feasible period 0' is, in this case, either 
in00 or (n + 1)00, whichever of the two results in a smaller cost when ' 
is substituted in (2.4). In our paper, Arrow et al. [1, Section 2:E-F], 
this was treated in more detail, and an extension was made to the case 
in which ordering at nonscheduled times is not impossible but merely 
more costly than ordering at scheduled times. 

For reasons of space we omit here the problem of aggregation, also 
treated in that paper [1, Section 2:G-I] and, from a more general 
viewpoint, in Marschak [2]. We assume that there is only one com- 
modity, or that the characteristic parameters for all commodities are 
such as to yield the same optimal period 0* for all. We also assume 
that there is only one giver of orders (depot) and one receiver of orders 
(manufacturer); on this, see Tompkins [1]. 
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256 K. J. ARROW, T. HARRIS, AND J. MARSCHAK 

3. A STATIC MODEL WITH UNCERTAINTY 

3:A. Suppose an organization wants to choose the level S ) 0 that 
the stock of a certain commodity should have at the beginning of a 
given period, in order to provide for the demand (requirements) that 
will occur during that period. We shall choose the time unit to be equal 
to the length of this period and shall use the notations of Section 2. 
Thus x > 0 will denote the demand during the period. However, x will 
now be regarded as a random variable. We shall suppose that the 
organization knows the cumulative distribution of demand, F(x). 
The gross utility, to the organization, of delivering t units of its 
product will be 

(3.1) at + ao (a, aO constant). 

The delivery during the period is a random variable: t equals x or S, 
whichever is smaller. Hence the expected gross utility is 

(3.2) aS[1 - F(S)] + af xdF(x) + ao . 

We shall assume that the amount to be spent in purchasing S units is 

(3.3) S(bo - b,S) + K; bo > 0, bi > 0, 

so that, as in Section 2:C, the purchase price is either constant or 
linearly decreasing with the amount purchased. As before, the cost of 
handling an order is denoted by K but this term will not play any 
further role in the static model. We assume here that the whole stock 
S is to be purchased and that no utility is derived from satisfying 
demand after the period's end. Finally, the cost of carrying over our 
period the stock which has level S at the beginning of the period will 
be assumed to be 

(3.4) const. + cS. 

Then, apart from a "depletion penalty," which we shall introduce 
in Section 3:1B, the net expected loss (the negative of net expected 
utility) is 

(3.5) const. + S(c + bo - bS) - aS[1 - F(S)] - a x dF(x). 

3: B. We now define ir, the depletion penalty, as follows: If x < S, 
there is no unsatisfied demand, and ir = 0; but if x > S, the organization 
would be willing to pay an amount 7r > 0 to satisfy the excess, x - S, 
of demand over available stock. 
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OPTIMAL INVENTORY POLICY 257 

We assume the penalty function as given. The organization-whether 
commercial or noncommercial-has a general idea of the value it would 
attach to the damage that would be caused by the nonavailability of an 
item. It knows the cost and the poorer performance of emergency 
substitutes. The penalty for depleted stocks may be very high: "A 
horse, a horse, my kingdom for a horse," cried defeated Richard III. 

3: C. Note that, in the case of a commercial enterprise, an independent penalty 
function, 7 = 7r(x - S), need not be introduced. It can be replaced by consider- 
ations of "losing custom," as in the following model. Let Ft be a Poisson distri- 
bution of demand for the period (t, t + 1), with the following interpretation. 
Its mean, l , is proportional (a) to the probability that a member of a large but 
finite reservoir of customers will want to buy during that period, and (b) to the 
number of customers. gt equals ;t-l if the demand during (t - 1, t) was satisfied. 
But, if that demand was in excess of the then available stock, lt is smaller than 
M-1 by an amount proportional to the unsatisfied demand, as some of the dis- 
appointed customers will drop out of the market. The problem is to maximize 
total expected utility over a sequence of periods (0, 1), (1, 2), -. -, if the initial 
distribution Fo is given. (Such a dynamic model would be different from the one 
we are going to treat in Sections 4-7.) 

3: D. We shall assume 

Jr = A + B(x - S) if x > S, 

7r = 0 otherwise, 

where A, B are nonnegative constants, not both zero. Then ir is a 
random variable, with expectation 

r0 
(3.6) (A - BS)[1 - F(S)] + B] x dF(x). 

Accordingly, the expected net loss, taking account of the expected 
penalty, is the sum of expressions (3.5) and (3.6) and equals, apart 
from a constant, 

S(c + bo - b1S) + A[1 - F(S)] - (B + a)S[ -F(S)] 

(3.7) rs (3.7) - (B + a)]' x dF(x) L(S), 

say. The stock level S = S* is optimal if L(S*) < L(S) for every S. 
Suppose the distribution function F(x) possesses a differentiable density 
function, f(x) 3 dF(x)/dx. If the absolute minimum of L is not at 
S = 0, it will be at some point satisfying the relations 

dL(S*)/dS = 0, d2L(S*)/dS2 > 0, 
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258 K. J. ARROW, T. HARRIS, AND J. MARSCHAK 

which imply that 

(3.8) [c + bo - 2b,S*] - Af(S*) - (B + a)[1 - F(S*)] = 0, 

(3.9) -2b, - AfI(S*) + (B + a)f(S*) > 0. 

3:E. In the economist's language, the first bracketed term in (3.8) 
is the "marginal cost" (of buying and carrying an additional unit in 
stock); the remaining two terms yield the "marginal expected utility." 

It is seen from (3.8) that the optimal stock S* is determined by the 
following "noncontrolled" parameters: (1) the demand distribution 
function, F(x); (2) certain utility and cost parameters, (c + bo), b1, 
A, and (B + a). If, in particular, bi = 0 (i.e., the economy of big-lot 
purchases is negligible), these parameters reduce to two: A/(c + bo) 
and (B + a)/(c + bo). To simplify further, for the sake of illustration, 
suppose also that B = a = 0, (that is, the penalty is either zero or A, 
independent of the size of the unsatisfied demand) and that utility 
derived from the functioning of the organization does not depend on 
the amounts delivered. Then (3.8), (3.9) become 

(3.10) f(S*) = (c + bo)/A, f'(S*) < 0. 

A graphical solution for this case is shown in Figure 2. (Note that 
f'(S*) < 0 but f'(S') > 0; S* is the best stock level, but S' is not.) 

1fx) 

(c+ bo)/A L2 

0 SSt X 

FIGURE 2 

3:F. In some previous literature (Fry [1], Eisenhart [1]) the decision 
on inventories was related, not to utility and cost considerations, but 
to a preassigned probability [1 - F(S)] that demand will not exceed 
stock. The choice of the probability level 1 - F(S) depends, of course, 
on some implicit evaluations of the damage that would be incurred if 
one were unable to satisfy demand. In the present paper, these evalua- 
tions are made explicit. On the other hand, since parameters such as 
A, B, a can be estimated only in a broad way (at least outside of a 
purely commercial organization, where utility equals dollar profit and 
where models such as that of Section 3: C can be developed), it is a 
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OPTIMAL INVENTORY POLICY 259 

welcome support of one's judgment to check these estimates by referring 
to the corresponding level of probability for stock depletion. For example, 
if the distribution in Figure 2 were approximately normal, then to 
assume that penalty A is 100 times the marginal cost c + bo would be 
approximately equivalent to prescribing that the shaded area measur- 
ing the depletion probability should be 0.3%; to assume that A - 
10(c + bo) would be approximately equivalent to making depletion 
probability equal to 5%, etc. 

3:G. In the more general case, when B + a > 0 (but still b1 = 0), 
a given optimal stock level S*, and consequently a given probability 
of depletion 1 - F(S*), is consistent with a continuous set of values of 
the pair of parameters, A/(c + bo) = A', (B + a)/(c + bo) = B', such 
as would satisfy the linear equation (3.8). For example, if F(x) is ap- 
proximately normal, then an optimal stock exceeding the average 
demand by two standard deviations of demand (and, consequently, a 
depletion probability of approximately 2.3%) will be required by any 
pair of values of A', B' lying on the straight line intersecting the A'- 
axis at 13 and intersecting the B'-axis at 44; while an optimal stock 
exceeding the average demand by three standard deviations (and, 
consequently, a depletion probability of 0.1%) will correspond to a 
straight line intersecting those axes at 228 and 740, respectively. Thus 
a set of contour lines helps to choose an interval of optimal stock values 
consistent with a given region of plausible values of parameters de- 
scribing penalty and gross utility. 

4. A DYNAMIC MODEL WITH UNCERTAINTY: PROBLEM 

4:A. The model described in Section 3 may be called a static one. 
We shall now present a dynamic model. In this model the commodity 
can be reordered at discrete instants 0, Go, ** *, too, * * , where Go is a 
fixed constant. We can therefore use 0o as a time unit. Let xt (t integer) 
be the demand over the interval (t, t + 1). Assume the probability 
distribution of demand F(x) to be independent of t. Denote by yt the 
stock available at instant t, not including any replenishment that may 
arrive at this instant. Denote by Zt the stock at t including the re- 
plenishment. Denote by qt the amount ordered at time t. Let the time 
between the ordering and the receiving of goods (pipeline time) be r, 
an integer. Then 

(4.1) yt = max (zi - -x1, 0) (t = 1,2, 2**), 

(4.2) Zt+FT= yteT + qt (t = 0, 1,**). 

In general, r is a nonnegative random variable. We shall, however, 
assume X = 0 to simplify the analysis at this stage. Then (4.2) becomes 
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260 K. J. ARROW, T. HARRIS, AND J. MARSCHAK 

(4.3) z = yt + qt. 

Choose two numbers S and s, S > s > 0, and let them define the follow- 
ing rule of action: 

If yt > s, qt = 0 (and hence Zt = yt); 
(4.4) 

if yt < s, q t S - Yt (and hence zt = S). 

S and s are often called, respectively, the maximum stock and the 
reordering point (provided r = 0). 

Figure 3 shows the sort of curve that might be obtained for stock 
level as a function of time if such a rule is adopted. Figure 4 shows Zt 

as a function of Ye. 

Z t Zt 

S-_.o.t\L'\S I___K__ _ 
450 

I' - - - s? _ 

TIME SY 
FIGURE 3 FIGUIRE 4 

4: B. We shall assume (as we have done in Sections 2 and 3) that the 
cost of handling an order does not depend on the amount ordered. 
Let this cost be K, a constant. Let the depletion penalty be A, a con- 
stant [compare Section 3: D, with B = 0]. Let the marginal cost of carry- 
ing stock during a unit of time be c, as in (3.4). Assume the pur- 
chasing price per unit of commodity to be independent of the amount 
bought and equal to the marginal utility of one unit (i.e., in the notation 
of Section 3:A, b1 = 0, bo = a). That is, the utility of operations of the 
agency, in excess of the expenses paid for these operations, is assumed 
constant, apart from the cost of storage and of handling orders. In the 
notation of Section 3: A, this constant is ao, while K and c denote, 
respectively, the cost of handling an order (of any size) and the marginal 
cost of storage. Our assumption is an admissible approximation in the 
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case of some nonprofit agencies. It would certainly be both more 
general and more realistic to make the marginal utility of an operation 
differ from its purchasing price, as was the case in our static model. But 
this will require further mathematical work (see Section 7:A). 

4: C. If yo is given and values S and s are chosen, the subsequent 
values Yt form a random process which is "Markovian"; see Feller [2, 
Chapter XV]. That is, the probability distribution of yt+1, given the 
value of Yt, ,is independent of yt-i, * * *, yo . During the period (t, t + 1) 
a certain loss will be incurred whose conditional expectation, for a fixed 
value of yg, we denote by l(yt). Under the simplifying assumptions of 
Section 4:B, 

4.51(Yt) -cYt 
+ A[1 -F(yt)] for Yt > s, 

lcs + A[1-F(S)] + K for y' < s. 

Thus the function l(yt) involves S and s as parameters and is constant 
for yt , s. Note that 

(4.6) 1(0) = I(S) + K. 

The unconditional expectation of the loss during (t, t + 1), that is, 
the expectation of i(ye), with Yt as a random variable, will be denoted by 

(4.7) it = lt(yO). 

We shall write lt(yo) rather than it only when we need to emphasize 
the dependence of lt on the initial stock level. Clearly lo(y) = 1(y) for 
every value y of yo . 

Figure 5 shows a possible type of graph for l(yt). 

1 (Yt) 

s Yt 

FIGURE 5 

4: D. We now introduce the concepts of a discount factor, a, and of 
the "present value" of a loss. If the value of yt, is given, the present 
value at time to of the expected loss incurred in the interval (to + t, 
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to + t + 1) is at&[t(yto+t)] = atlt(yto). When maximizing expected 
utility, the policymaker takes into account the present values of losses, 
not their values at the time when they are incurred. In commercial 
practice, a is equal to 1/(1 + p), where p is an appropriate market rate 
of interest. In nonprofit practice, a would have to be evaluated sepa- 
rately (see also footnote 3). Later, however, it will be shown (see Sec- 
tion 5:B) that, under certain conditions, the optimal values of the 
parameters S, s can be found for a essentially equal to 1. 

If we now define the function 

L(y) = lo(y) + ali(y) + a212(y) + ... 

we see from definition (4.7) that L(yt) is the present value at time, t 
of the total expected loss incurred during the period (t, t + 1) and 
all subsequent periods when yt is given. By definition, L(y) involves 
the parameters S and s; and the policymaker fixes these parameters so 
as to minimize L(yo). 

4:E.5 Now suppose yo is given. For a fixed value of Yi, the present 
value of the total expected loss over all periods is 

(4.8) l(yo) + -al(yl) + a28 1U(y2)] + a38EJt(y3)] + . 

where we have used 8y1[l(yr)] to denote the conditional expectation of 
l(yr), given the fixed value yi. Now 

8&u [1(Yr)] = lr-l(Yi) (r = 1, 2, . . 

because of the fact that, if y, is fixed, the subsequent value Yr (r = 1, 
2, --) is connected with y, in the same manner that Yr-_ is connected 
with yo if y, is not specified. Therefore, expression (4.8) is equal to 

l(yo) + alo(yl) + a211(yl) + a312(yi) + 

(4.9) 
= 1(yo) + a[lo(yi) + ali(yi) + a 2l2(yl) + ...] = l(yo) + aL(yi). 

The total expected loss over all periods from the beginning, which by 
I The following intuitive summary of the argument of Section 4: E has been 

kindly suggested by a referee: During the first period, the expected loss is 1(y) 
and demand is x with probability dF(x); the stock remaining will be S - x or 
y - x as the case may be, with a forward-looking expected loss of, respectively, 
L(S - x) or L(y - x). In the former case, the expected future loss at the end of 

the first period is L(S - x) dF(x) + L(O)[1 - F(S)J, all of which needs only 

to be multiplied by a to be discounted back to the beginning of the first period 
where it can be added to the original 1(y). This yields equation (4.11). The com- 
panion equation (4.12) is obtained similarly for the case when the stock remaining 
at the end of the first period is y - x. 
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definition is L(yo), is the expectation of the expression in (4.9), with Yi 
regarded as a random variable. Hence 

(4.10) L(yo) = l(yo) + a8[L(y1)]. 

To express the expected value of L(y1) as a function of yo we note that, 
if yo < s, then zo = S andy1 = max (S - xo, 0); while, if Yo > S, 
then z0 = yo and Y =max (yo -xo, 0). Thus 

&[L(yi)] = j L(S - x) dF(x) + L(O)[1 - F(S)] for yo % s, 

(4.10') 

&[L(y0)= f L(yo - x) dF(x) + L(O)[1 - F(yo)] for yo > s. 

[Notice that from the way we have defined the rule of action, L(y) is 
constant for 0 ( y < s so that L(O) is unambiguously defined.] Putting 
yo = y we obtain from (4.10) and (4.10') the equations 

(s 
(4-11) L(Y) 1 (Y) + ax L(S- X) dF(X) + cxL(O)[1l-F(S)] if y < s, 

(4.12) L(y) 1(y) + axf L(y - x) dF(x) + aL(O)[1 - F(y)] if y > s. 

Our problem is to find the function L(y) that satisfies (4.11), (4.12) 
and to minimize L(yo) with respect to S, s. 

5. A DYNAMIC MODEL: METHOD OF SOLUTION 

5: A. In treating equations (4.11) and (4.12) we drop for the time being the 
assumption that F(x) has a density function and assume only that the random 
variable x cannot take negative values. In order to take care of the possibility 
that F(x) has a discontinuity at x = 0 (i.e., a positive probability that x = 0), 

we adopt the convention that Stieltjes integrals of the form f ( ) dF(x) will 

be understood to have 0O as the lower limit. We continue to assume that 1(y) is 
given by (4.5), but it is clear that a similar treatment would hold for any non- 
negative function 1(y) that is constant for 0 sK y < s and satisfies certain obvious 
regularity conditions. 

Since 1(y), and therefore also L(y), is independent of y for 0 < y < s, equation 
(4.11) tells us simply that 

(5.1) L(0) = l(o) + a f L(S - x) dF(x) + aL(0)[1 - F(S)], 

while putting y = S in (4.12) gives 

B 

(5.2) L (S) = i(S) + a f L(S - x) dF (x) + aL (0) [1 - F (S)]1. 
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Substracting (5.2) from (5.1) we obtain, using (4.6), 

(5.3) L(O) - L(S) = K, 

an expression which is in fact obvious since if the initial stock is 0 we immediately 
order an amount S at a cost K for ordering. We shall solve equation (4.12) for the 
function L(y), considering L(0) as an unknown parameter, and then use (5.3) 
to determine L(0). 

On the right side of (4.12) we make the substitution 

(5.4) f L(y - x) dF(x) = L(y - x) dF(x) + L(0) f dF(x); 

the last term follows from the fact that L(y - x) = L(O) when 0 < y - x S 8. 

Now make the change of variables, 

y-s = 

(5.5) 
L(y) = L (i7 + s) 

Putting (5.4) and (5.5) in (4.12) gives 

(5.6) X(7n) = l(7 + s) + aL(0)[1 - F(v)] + a f Xa(7 x) dF(x), iq > 0. 

Equation (5.6) is in the standard form of the integral equation of renewal theory; 
see, for example, Feller's paper [1]. The solution of (5.6) can be expressed as 
follows. Define distribution functions Fn(x) (n = 1, 2, *-- ) [the convolutions of 
F(x)] by 

Fi(x) = F(x) 

(5.7) 2 

Fn+1(x) = Fn(x - u) dF(u). 

Define the function H,(x): 

00 

(5.8) Ha(x) = E a'-Fn(X), < o < 1. 
n1 

It is obvious that the series converges if 0 S a < 1, and in fact it can be seen from 
Feller's article [1] that it converges if a = 1, a fact we shall need in the sequel. 
Putting 

(5.9) R(t7) = 1(t7 + s) + aL(0)[1 -F()], 

we can write the solution of (5.6) as 

X6r) = R(n) + f R(n - x) dH,(x) 

(5.10) 00 af 
=2(v7) + E cn R 8(X1 x) dFn(X). 

n-10 
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This is the only solution which is bounded on every finite interval. In terms of 
L and 1, (5.10) gives 

L(y) = 1(y) + aL(0M)1 - F(y - s)] 

(5.11) 8 
+ {(y - x) + aL(0)[1 - F(y - x - s)]} dHa(x), y > 8. 

From (5.3) and (5.11) we have 

L(0) - K = I(S) + (S - x) dHa(x) 

(5.12) 
( ts~ ~ ~~-8 

(2 aL(O) 1 - F(S - s) + [1 - F(S - s - x)] dHa(x)}. 

In (5.12) we have a linear equation which we can solve for the unknown quantity 
L(O) which has, as we shall show, a nonvanishing coefficient in (5.12) as long as 
a < 1. This gives us the value of L(y) for y < s, and we can obtain L(y) for y > s 
from (5.11) since every term on the right side of that equation is now known. 

The coefficient of L(0) in (5.12) is 

1 a {1 -F(S - s) + f [1 - F(S - s - x)] dHa(x)} 

{ ~~~~~~~~~~~s-8 
(5) 1 -a {1 -F(S-s) + Ha(S-s) - .JF(S-s- z) dHa(x)} 

(5.13) o 

( ~~~~00 00 

= 1-xa i1 - F(S - s) + E aF,,(S -s) - E a-Fs,l (S -s)} 
n-1 n,) 

= (1- a)[1 + Ha(S - s). 

Using (5.13) we obtain 

K + I(S) + l(S - x) dHa(x) 

(5.14) L(0) - (1 -)[1 + Ha(S-)I 

Knowing L(y) from (5.11) and (5.14), the next step is to find, for a given initial 
stock yo , the values of s and S which minimize L(yo). We shall consider only the 
minimization of L(0), although the procedure could be worked out to minimize 
L(yo) for any initial stock ye. The procedure of minimizing L(O) is not quite so 
special as it may appear. Suppose that for a given yo the values of s and S which 
minimize L(yo) are denoted by s*(yo) and S*(yo). If s*(0) > 0 and if s*(yo) and 
S*(yo) are uniquely determined continuous functions of yo (a point which we have 
not investigated mathematically), then s*(yo) = s*(0), S*(yo) = S*(0) for suf- 
ficiently small yo . To see this we write 

L(y) = L(y; s, S) 
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to indicate the dependence of L on s and S. Let a be a number such that 
O < a < s*(O). Suppose yo , 0 < yo < a, is sufficiently small so that s*(yo) > a. 
Then 

L(yO ; s*(yo), S*(yo)) = mn L(yo ; s, S) = K + min L(S; s, S), 
> a, ai-, 8>a,8*> ?a 

which is minimized independently of yo ; Q.E.D. 
In Section 5: B an optimization criterion will be given which is independent of 

the initial level yo. 
We now reintroduce the assumption that F(x) has a probability density which 

is continuously differentiable, 

F(x) = jf(t)dt. 

We recall from (4.5) that 1(y), for y > s, is given by 

a(y) = A[l - F(y)] + cy. 

Consider the minimization of (5.14) with respect to s and S. First we consider 
the case where S - s is fixed. The denominator of (5.14) involves S and s only as 
a function of S - s. We therefore have to minimize the numerator of (5.14) with 
respect to S, subject to the constraint that S is at least as great as the fixed value 
of S - s. If the minimum value does not occur for S = S - s (i.e., s = 0), it occurs 
at a value of S for which the conditions 

&-S 

(5.15) c - Af(S) + [c - Af(S - x)] dHo(x) = 0, 

(5.16) -AfJ(S) - ] Af'(S - x) dHa(x) > 0, 

hold. It should be noted that K does not enter into (5.15) and (5.16). 
If we drop the requirement that S - s be fixed, then s* and S*, provided they 

satisfy the condition 0 < s* < S*, occur at a point where equation (5.15) holds, 
together with the equation obtained by setting the derivative of (5.14) with 
respect to S - s equal to 0 and taking the appropriate second-order conditions 
into account. We also need here the assumption that Ha(x) is the integral of a 
function ha(x), 

Ha(x) = j ha(t) dt. 

Then differentiation of (5.14) with respect to S - s gives, setting the derivative 
equal to 0 and integrating by parts, 

8-e 

(5.17) A [F(S) - F(s) = c(S - s) + K + fJ c - Af(S - x)]]Ha (x) dx. 

Presumably the minimization of (5.14) would be accomplished in practice by 
numerical methods. 
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5: B. So far we have considered a as an arbitrary parameter. It is clear that if 
we let a -- 1, keeping s and S fixed, the quantity L(O) becomes infinite. However, 
as we shall see, the quantity (1 - a)L(O) approaches a finite limiting value whose 
significance can be explained as follows. Suppose that levels s and S have been 
fixed and that yo is given. We have mentioned that the quantities ys then form a 
Markovian random process. Moreover, under assumptions on F(x) [which are 
not of practical importance] the probability distribution of yt, as t -+ oo, ap- 
proaches a fixed limiting distribution which is independent of yo. When F(x) 
is a step function,6 we are dealing with a Markov chain with a denumerable 
number of states. If F(x) is not a step function this theory can still be applied 
indirectly. The "age" of the stock at any given time (i.e., the length of time since 
the last order was placed) has a distribution of the discrete type which approaches 
a limit, and from this it follows that yt has a limiting distribution. This implies 
that It , the expected loss in the interval (t, t + 1) approaches a limiting value 
lx which is independent of yo . (The losses during successive time intervals form 
a sequence of bounded random variables.) As we shall see, we can find the value 
of lo . Then if we do not want to use a discount factor a, one way to proceed is to 
pick s and S so as to minimize l, . This is almost equivalent to minimizing the 
total expected loss over a long finite time interval. 

Another way to look at the situation is as follows. The limiting distribution 
of yL for large t is a "stationary distribution"; i.e., if yo has this distribution, 
instead of being fixed, then ys has the same distribution for every t. The expected 
loss during (t, t + 1), if yt has this distribution, is just lo: .7 

Since 

L(O) = lo(O) + acli(O) + a2 12(0) + 

and lt(O) -l as t ??, we have 

(5.18) L(O)(1 - a) lo(O) + a[l(O)- lo(O)I + Ca [12(0)- l(O) + * 

The series 

lo(0) + [11(0) - lo(0)I + [12(0) - 11(0)] + *-- 

converges to the value lx and therefore, by a standard result of analysis, we have, 
from (5.18), 

lim L(O) (1-cx) = 
a-1 

In order to determine x. , we can then multiply the right side of (5.14) by (1 - a) 
and let a -c 1, obtaining 

r8- 

K+I(S)+ f l(S-x)dH(x) 

(5.19) lx - - 1 + H(S - s) 

where H(x) is defined by 
00 

H(x) = lim H. (x) = ZFn(x). 
a-1n 

c See Feller [2, Chapter XV], for the case when F(x) is a step function. 
7This stationary distribution can be found explicitly and, as pointed out by 

H. Simon, gives an alternative means of finding l, . 

This content downloaded from 133.11.138.166 on Mon, 20 Apr 2015 04:26:45 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


268 K. J. ARROW, T. HARRIS, AND J. MARSCHAK 

(It is not hard to see that the step 

lim l(S - x) dHf(x)=f I(S-x) dH(x) 
at Jo Jo 

is justified.) 
We can then minimize the function in (5.19) with respect to s and S. It should 

be noted that 1,, is, of course, independent of the initial stock yQ 

6. A DYNAMIC MODEL: EXAMPLES 

We consider now some examples for a particular function F(x). It is advanta- 
geous to use a function whose convolutions can be written explicitly. From this 
point of view, functions of the form 

(6.1) F (x) -(k ul )! eu du, k > 0, j > 0, 

are convenient [(k - 1)! is r(k) if k is not an integerl since by proper choice of 
,3 and k we can give any desired values to the mean and variance, 

- k/l3, 22 - (2)_ k/= 2 

and since Fn(x) is then given by 

F. (x) = (n-1) Uk-l eDOu du. 
(nk -) l 

The function H.(x) is then given by 

(6.2) H.(x) nk 
(nk-1 du. 

If k is an integer, the summation in (6.2) can be performed explicitly, giving 

(6.3) H ) . f ( Z e O)du, 

where OI, -. -, Wk are the kth roots of unity. For example, if k = 2, we 
have WI = -1, W2 = 1, so that 

H(.x) = 2 j eP-'(e ,6'au_ e-AVau) du. 

It is instructive to find the value of l. for the simple case f(x) = e-. In this 
case,fl = k = 1; F = 1 - e-z; and, from (6.3), 

H(x) f eu(eu)du = x 

This content downloaded from 133.11.138.166 on Mon, 20 Apr 2015 04:26:45 UTC
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


OPTIMAL INVENTORY POLICY 269 

and we have 

K+l(S)+ + l IS-x)dx 

Zx = 1~ + S -s 

s-+s 
K + cS + Ae-8 + f [c(S - x) + Ae-s+x] dx 

1 + S -s 

K + cS + Ae-s + cS(S -s) - (S - s)2 + Aes (e- -1) 
2 

1+ -s 

K + cS + Ae-J + 2 (S2-82) 
2 

1 +S-s 

Letting S - s = A, we see that this expression, for a fixed value of a, has its 
minimum (unless it occurs when s = 0) when 

S = log.(A/c) - log.(1 + A) + A. 

7. FURTHER PROBLEMS AND GENERALIZATIONS 

To make the dynamic model more realistic certain generalizations 
are necessary. We shall register them in the present section as a program 
for further work. 

7:A. Of the several cost and utility parameters used in the certainty 
model of Section 2 and in the static uncertainty model of Section 3, 
we have retained in the dynamic uncertainty model only three: c, the 
marginal cost of storage; K, the constant cost of handling an order; and 
A, the constant part of the depletion penalty. We have thus dropped 
the parameters a, bo, b1, and B. The meaning of the first three of these 
was discussed in Section 4:B. It can be presumed from equation (3.8) 
of the more developed static model that if we similarly developed the 
dynamic model, c could be easily replaced by (c + bo) but that (B + a) 
would form an additional parameter altogether excluded from our 
simple dynamic model. Difficulties of another kind will occur when 
bi > 0, i.e., when there are economies of big-lot buying, which are due, 
not to the advantage of handling one order instead of many, but to the 
cheapness of transporting (and producing) large quantities. This will 
obviously modify the rule of action (4.4), as the loss that we intend to 
minimize will depend on (S - y,), the size of the replenishment order. 

7:B. We have assumed the distribution F(x) of demand per unit 
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period to be known, presumably having been estimated from previous 
samples. Actual estimations of this distribution were carried out by 
Fry and Wilson for the Bell Telephone Company, and by Kruskal and 
Wolf [1, 2] with the material of the medical branch of the U. S. Navy. 

Instead of estimating the distribution F(x), once and for all, and 
fixing constant values for S and s, one may vary S and s as new observa- 
tions on demand are obtained. The problem is one of expressing the 
best values of S and s for the time t as functions of the sequence of 
observations available up to that time-say S,(xi,*** , xt1) and 
St (xi, , x_-). More generally, one has to find a sequence of functions 
qt(xi, * , xt-1) giving the best amounts to be ordered, a sequence not 
necessarily restricted by conditions (4.4). We do not propose to attack 
this problem here.8 

Stanford University, The RAND Corporation, and Cowles Commission 
for Research in Economics 
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