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Statistical Science 
1989, Vol. 4, No. 3, 282-296 

Who Solved the Secretary Problem? 
Thomas S. Ferguson 

Abstract. In Martin Gardner's Mathematical Games column in the February 
1960 issue of Scientific American, there appeared a simple problem that has 
come to be known today as the Secretary Problem, or the Marriage Problem. 
It has since been taken up and developed by many eminent probabilists and 
statisticians and has been extended and generalized in many different 
directions so that now one can say that it constitutes a "field" within 
mathematics-probability-optimization. The object of this article is partly 
historical (to give a fresh view of the origins of the problem, touching upon 
Cayley and Kepler), partly review of the field (listing the subfields of recent 
interest), partly serious (to answer the question posed in the title), and 
partly entertainment. The contents of this paper were first given as the 
Allen T. Craig lecture at the University of Iowa, 1988. 

Key words and phrases: Secretary problem, marriage problem, search prob- 
lem, relative ranks, stopping times, minimax rules. 

1. INTRODUCTION 

In the late 1950's and early 1960's there appeared a 
simple, partly recreational, problem known as the 
secretary problem, or the marriage problem, or the 
dowry problem, that made its way around the mathe- 
matical community. The problem has a certain appeal. 
It is easy to state and has a striking solution. It 
was immediately taken up and developed by certain 
eminent probabilists and statisticians, among them 
Lindley (1961), Dynkin (1963), Chow, Moriguti, Rob- 
bins and Samuels'(1964), and Gilbert and Mosteller 
(1966). Since that time, the problem has been ex- 
tended and generalized in many different directions 
so that now one can say that it constitutes a "field" of 
study within mathematics-probability-optimization. 
One can see from the review paper by Freeman (1983) 
how extensive and vast the field has become; more- 
over, the field has continued its exponential growth in 
the years since that paper appeared. 

One main objective of the present article is histori- 
cal, to review the history of the problem with the aim 
of determining who was the first to solve the secretary 
problem. The historical review may take us far, but I 

think you will find the journey interesting, and the 
conclusion surprising. 

2. STATEMENT OF THE PROBLEM 

The reader's first reaction to the title might well be 
to ask, "Which secretary problem?". After all, as I 
have just implied, there are many variations on the 
problem. The secretary problem in its simplest form 
has the following features. 

1. There is one secretarial position available. 
2. The number n of applicants is known. 
3. The applicants are interviewed sequentially in 

random order, each order being equally likely. 
4. It is assumed that you can rank all the applicants 

from best to worst without ties. The decision to 
accept or reject an applicant must be based only 
on the relative ranks of those applicants inter- 
viewed so far. 

5. An applicant once rejected cannot later be re- 
called. 

6. You are very particular and will be satisfied with 
nothing but the very best. (That is, your payoff 
is 1 if you choose the best of the n applicants and 
O otherwise.) 

This basic problem has a remarkably simple solu- 
tion. First, one shows that attention can be restricted 
to the class of rules that for some integer r > 1 rejects 
the first r - 1 applicants, and then chooses the next 
applicant who is best in the relative ranking of the 
observed applicants. For such a rule, the probability, 
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/0(r), of selecting the best applicant is 1/n for r = 1, 
and, for r > 1, 

n= E Jth applicant is best 
j=nr) \ and you select it (2.1) J=r 

j=r \fl/- 11 ( n j=rJ 

The optimal r is the one that maximizes this proba- 
bility. For small values of n, the optimal r can easily 
be computed. Of interest are the approximate values 
of the optimal r for large n. If we let n tend to infinity 
and write x as the limit of r/n, then using t for j/n 
and dt for 1/n, the sum becomes a Riemann approxi- 
mation to an integral, 

(2.2) ( i)j( 1)(n) 

- x f (-) dt = -x log(x). 

The value of x that maximizes this quantity is easily 
found by setting the derivative with respect to x equal 
to zero and then solving for x. When this is done we 
find that 

(2.3) optimal x = lle = .367879 *.. , and 
optimal probability = l/e. 

Thus for large n, it is approximately optimal to wait 
until about 37% of the applicants have been inter- 
viewed and then to select the next relatively best one. 
The probability of success is also about 37%. 

This derivation may seem a little loose, but it gives 
the right answer. For a lucid presentation of these and 
related results, see the basic paper of Gilbert and 
Mosteller (1966). 

3. HISTORICAL BACKGROUND 
There is some obscurity as to the origins of this 

problem. It seems to be generally agreed among work- 
ers in the field that the first statement of the problem 
to appear in print occurred in the February 1960 
,column of Martin Gardner in Scientific American, 
where it is attributed to Fox and Marnie. A solution 
to the problem is outlined in the March 1960 issue of 
Scientific American and attributed to Moser and 
Pounder. In 1963, it appeared as a problem in The 
American Mathematical Monthly contributed by Bis- 
singer and Siegel (1963); in 1964, a solution appeared 
due to Bosch. But Mosteller learned of the problem in 
1955 from Andrew Gleason, "who claimed to have 
heard it from another," (Gilbert and Mosteller, 1966). 
Herb Robbins recalls discussing the problem in 1953- 
54 at Columbia University, and Merrill Flood recalls 
presenting a version of the problem that he called the 

fiance problem at a conference on mathematical prob- 
lems in logistics held at George Washington Univer- 
sity in January 1950 (personal communication, 1988). 
I personally remember working on extensions of the 
problem in the summer of 1959. In any case, many 
people knew of the problem by the time it appeared 
in print. 

Lindley (1961) seems to be the first to solve the 
problem in a scientific journal. He extends the 
problem to an arbitrary utility based on the rank 
of the applicant selected, and considers in particular 
the problem of minimizing the expected rank of the 
applicant selected, rank 1 being best. However, the dif- 
ficult problem of finding the asymptotic, for large n, 
optimal strategies and expected rank was left open, 
and finally solved neatly by Chow, Moriguti, Robbins 
and Samuels (1964). Dynkin (1963) considers the 
problem as an application of the theory of Markov 
stopping times, and shows that, properly interpreted, 
the problem is monotone so that the one-stage look- 
ahead rule is optimal. 

Then, in 1966, came the basic paper of Gilbert and 
Mosteller, with elegant derivations and extensions in 
a number of important directions. In particular, they 
allow r choices to obtain the best; they consider the 
problem of obtaining the best or the next best; they 
treat the "full-information" case, in which one is al- 
lowed to observe the actual values of the applicants 
(presumed to be chosen independently from a given 
distribution), for both the best-choice problem and for 
the minimum-rank problem; they analyze some game 
theoretic versions of the problem; etc. This paper, 
more than the others, foreshadowed the explosion of 
ideas, generalizations, and effort that would impact 
this area starting in 1972 and that continues strongly 
today. Some of these contributions will be mentioned 
in Section 5. 

This, briefly, is the official early history of the 
secretary problem. Since we are to attempt to discover 
who first solved this problem, we shall, as is customary 
in historical papers, proceed backward in time, looking 
for the germ of the idea hidden in forgotten literature. 
The first possibility occurs in the work of Arthur 
Cayley. 

4. CAYLEY'S PROBLEM 

The distinguished English mathematician, Arthur 
Cayley (1821-1895), is perhaps best known for his 
seminal work in the theory of algebraic invariants. He 
was also one of the most prolific mathematicians the 
world has ever known. His collected works contain 
some 966 papers touching on many subjects in math- 
ematics, theoretical dynamics and astronomy. Paper 
#705 contains some 50 pages of problems and solutions 
that Cayley submitted to the Educational Times from 
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1871 to 1894. One of these problems Cayley (1875), is 
as follows: 

4528. (Proposed by Professor Cayley) A lottery is 
arranged as follows: There are n tickets repre- 
senting a, b, c, ... pounds respectively. A person 
draws once; looks at his ticket; and if he pleases, 
draws again (out of the remaining n - 1 tickets); 
and so on, drawing in all not more than k times; 
and he receives the value of the last ticket drawn. 
Supposing that he regulates his drawings in the 
manner most advantageous to him according to 
the theory of probabilities, what is the value of 
his expectation? 

From the "Solution by the Proposer," we see that 
Cayley believes it to be understood that k, n, and the 
a, b, c, ... are known numbers. (Note that here k, 
rather than n, represents the total number of draw- 
ings.) He solves the problem by what is now known 
as the method of backward induction of dynamic 
programming. As an example, he takes n = 4, and 
a, b, c, d = 1, 2, 3, 4, and finds for k = 1, 2, 3, 4, the 
values of the most advantageous expectation to be 
10/4 38/12, 85/24, 4 resp. 

Cayley's problem was resurrected from oblivion by 
Moser (1956), who also reformulated the problem in a 
neater guise which may be viewed as an approximation 
to the Cayley problem when n is very large and a, b, 
c, ... are 1, 2, ..., n: You observe, sequentially, 
random variables X1, ... , Xk known to be iid from a 
uniform distribution on the interval (0, 1); if you stop 
after observing Xj, then you receive Xj as your reward. 
The optimal rule, as found by Moser, is to stop when 
there are m observations left to be observed if the 
value of the present observation is greater than Em, 
where the Em are defined recursively by Eo = 0 and 
Em+1 = (1 - E2)/2. The corresponding equations are 
discussed in Guttman (1960) for the normal distribu- 
tion, in Karlin (1962) for the exponential distribution 
and in Gilbert and Mosteller (1966) for the inverse 
power distribution. 

Although there are strong points of similarity be- 
tween Cayley's problem and the secretary problem, 
there is one important difference. The payoff is not 
one or zero depending on whether you select the best 
or not; it is a numerical quantity depending on the 
intrinsic value of the object selected. This difference 
plays a big role in the feeling of the problem and has 
led to a class of problems, called variously the house 
hunting problem, the problem of selling an asset, 
or the search problem, with a literature as large as 
for the secretary problems. The basic problem is the 
Cayley-Moser problem with an infinite horizon, with 
the payoff modified to make certain that one will wish 
to stop in a finite time. For example, Sakaguchi (1961) 

and Chow and Robbins (1963): Random variables X1, 
X2 * ... are observed sequentially at a cost of c > 0 per 
observation; if you stop after observing X,, then you 
receive Xn - nc. If recall of past observations is 
allowed, the payoff for stopping after observing Xn is 
max(X1, ..., XX) - nc; such problems were treated by 
MacQueen and Miller (1960), Derman and Sacks 
(1960) and Chow and Robbins (1961). In Karlin 
(1962), the problem is solved with a discount rather 
than a cost. See DeGroot (1970) for a fuller account 
of these developments. 

This class of problems forms a rather distinct set of 
problems that is still being confused with the secretary 
problems. Since there are so many variations of the 
basic secretary problem (each of the 6 conditions listed 
in Section 2 has been modified by at least one author), 
I think it is worthwhile to try to define what a secre- 
tary problem is. My definition is: A secretary problem 
is a sequential observation and selection problem in 
which the payoff depends on the observations only 
through their relative ranks and not otherwise on their 
actual values. 

With this definition then, Cayley's problem is not 
even a secretary problem. We must look elsewhere to 
see who solved the secretary problem. Proceeding far- 
ther back in time, we come to the first practical 
application I could find of these sequential observation 
and selection techniques: the selection of a wife by 
Johannes Kepler. 

5. KEPLER'S PROBLEM 

When the celebrated German astronomer, Johannes 
Kepler (1571-1630), lost his first wife to cholera in 
1611, he set about finding a new wife using the same 
methodical thoroughness and careful consideration of 
the data that he used in finding the orbit of Mars to 
be an ellipse. His first, not altogether happy, marriage 
had been arranged for him, and this time he was 
determined to make his own decision. In a long letter 
to a Baron Strahlendorf on October 23, 1613, written 
after he had made his selection, he describes in great 
detail the problems he faced and the reasons behind 
each of the decisions he made. He arranged to inter- 
view and to choose from among no fewer than eleven 
candidates for his hand. The process consumed much 
of his attention and energy for nearly 2 years, what 
with the investigations into the virtues and drawbacks 
of each candidate, her dowry, negotiations with her 
parents, natural hesitations, the advice of friends, etc. 
The book of Arthur Koestler (1960) contains an 
entertaining and insightful exposition of the process. 
The book of Carola Baumgardt (1951) contains much 
supplementary information. 

Suffice it to say that of the eleven candidates inter- 
viewed, Kepler eventually decided on the fifth. It may 



WHO SOLVED THE SECRETARY PROBLEM? 285 

be noted that when n = 11, the function 0n(r) of 
(2.1) takes on its maximum value when r = 5. Perhaps, 
if Kepler had been aware of the theory of the secretary 
problem, he could have saved himself a lot of time and 
trouble. 

Of course, in all practical applications of theoretical 
results, the assumptions are never exactly satisfied, 
and in the present instance this is especially true as 
we can see from Kepler's letter. For example, after 
interviewing candidate number 5 and being strongly 
attracted to her, Kepler listened to the advice of 
friends who were concerned with her lack of high 
rank, wealth, parentage and dowry (she was an or- 
phan), and who persuaded him to propose to number 
4. Thus, clearly Kepler thought he could recall past 
applicants in violation of assumption 5 of Section 2. 
Certainly, Kepler would have been interested in the 
papers of Yang (1974), Petruccelli (1981, 1984), Rose 
(1984), Ferenstein and Enns (1988) and others, who 
allow backward solicitation with a cost or with a 
probability q of being accepted. The probability q is 
not 1 in Kepler's case since candidate number 4 turned 
him down. He had waited too long. 

That Kepler went on after his failure with number 
4 shows that he was not just interested in getting the 
best (assumption 6 of Section 2). Perhaps he was 
minimizing the expected rank or some other utility 
function, in which case the papers of Chow, Moriguti, 
Robbins and Samuels (1964), Mucci (1973), Lorenzen 
(1979), Frank and Samuels (1980), etc., would have 
interested him. Since he had been married before, it 
is unrealistic to assume that he knew nothing about 
women (assumption 4 of Section 2); he would have 
enjoyed the full-information problem of Gilbert and 
Mosteller (1966) or Tamaki (1986). But it is also 
unreasonable to assume that he knew everything 
about women (who does?), so the models with partial 
information and learning of Stewart (1978), Samuels 
(1981), Campbell and Samuels (1981) or Campbell 
(1982) are more to the point. 

On the other hand, he actually interviewed all 11 
candidates and could have gone on. Perhaps he was 
expecting a random number of available candidates 
(violating condition 2 of Section 2), in which case he 
would have enjoyed reading the papers of Presman 
and Sonin (1972), Gianini-Pettitt (1979), Abdel- 
Hamid, Bather and Trustrum (1982), and Bruss and 
Samuels (1987). Or perhaps there was a cost of obser- 
vation as in Bartoszynski and Govindarajulu (1978), 
Lorenzen (1981) or Samuels (1985) or a discount 
factor as in Rasmussen and Pliska (1976). He would 
certainly be interested in the random arrival models 
of Sakaguchi (1976, 1986), Cowan and Zabczyk (1978) 
and Bruss (1987), in the game theoretic models of 
Presman and Sonin (1975), Fushimi (1981) and Enns 
and Ferenstein (1987), and in the multiple criteria 

formulation of Stadje (1980), Gnedin (1983), Berezov- 
skiy, Baryshnikov and Gnedin (1986) or Samuels and 
Chotlos (1986). Possibly, Kepler was concerned with 
the actual value of his bride and not just with her 
ranking among the other candidates. This would make 
it not a secretary problem at all, but a stopping-rule 
problem more like Cayley's problem or the search 
problem discussed in the previous section. 

It is clear that much more research needs to be done 
to clarify which of these problems Kepler was actually 
solving. Whichever one it was, there can be no doubt 
that the outcome was favorable for him. His new wife, 
whose education, as he says in his letter, must take 
the place of a dowry, bore him seven children, ran his 
household efficiently, and seems to have provided the 
necessary tranquil homelife for his erratic genius to 
flourish. 

6. THE GAME OF GOOGOL 

Let us return to the question: Of which of the many 
different versions of the secretary problem am I trying 
to find the solver? As historians, we should take as 
the secretary problem, the problem as it first appeared 
in print, in Martin Gardner's February 1960 column 
in Scientific American, where it was called the game 
of googol and described as follows. 

Ask someone to take as many slips of paper as 
he pleases, and on each slip write a different 
positive number. The numbers may range from 
small fractions of 1 to a number the size of a 
googol (1 followed by a hundred 0's) or even 
larger. These slips are turned face down and shuf- 
fled over the top of a table. One at a time you 
turn the slips face up. The aim is to stop turning 
when you come to the number that you guess to 
be the largest of the series. You cannot go back 
and pick up a previously turned slip. If you turn 
over all slips, then of course you must pick the 
last one turned. 

The astute reader may notice that this is not the 
simple form of the secretary problem described in 
Section 2. The actual values of the numbers are re- 
vealed to the decision maker in violation of condition 
4. Also, there is this "someone" who chooses the 
numbers, presumably to make your problem of select- 
ing the largest as difficult as possible. The game of 
googol is really a two-person game. 

This raises two questions. First, can you guarantee 
a higher probability of selecting the largest number if 
you allow your decision rule to depend on the actual 
values of the numbers? In other words, does the stated 
solution give the lower value of the game? Second, if 
you are told how this "someone" is choosing the num- 
bers to place on the slips, can you now guarantee a 
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higher probability of selecting the largest number? In 
other words, does the value of the game exist, and can 
we find optimal or c-optimal strategies for the se- 
quence chooser? These questions were not addressed 
in the solution presented in Scientific American in 
March 1960. 

The statement of the problem as it appeared in The 
American Mathematical Monthly in 1963 is much the 
same, but somewhat more nebulous since you are not 
told where the numbers come from. Perhaps it is a 
game against nature, so the second question above 
does not arise. In any case, the solution presented for 
the problem in 1964 contains the same oversight. 

Those distinguished statisticians who worked on 
the secretary problem in the 1960's were more careful 
in their statements of the problem in specifying what 
information could be used in the decision rule, but 
none of them attacked the above problem. Therefore, 
to see who first solved the problem, we must proceed 
into the 1970's and beyond. 

Suppose you were this "someone" who must choose 
the numbers to write on the slips. How would you go 
about choosing the numbers to make it as difficult as 
possible for me to obtain the largest? You could not 
just choose the numbers 1, 2, *.., n, because then I 
could wait until the number n appeared and thus 
obtain the largest number with probability 1. You 
could not just choose them iid from some fixed distri- 
bution, because this would lead to the full-information 
case solved by Gilbert and Mosteller (1966), who 
showed that I can obtain the largest number with 
probability at least 0.58016 ... , which is the limiting 
value for large n. So, you must choose the numbers in 
some dependent fashion. But you might as well choose 
them to be an exchangeable process since the numbers 
are put in random order anyway before being shown 
to me. Thus, you are drawn to the partial information 
models of Stewart (1978), Petruccelli (1980) and 
Samuels (1981). 

7. PARTIAL INFORMATION MODELS 

Let X1, * ... Xn denote the values of the numbers 
on the slips. These may be considered as the parame- 
ters of our statistical problem. We want to find a prior 
distribution for X1, ... , Xn, with respect to which the 
Bayes rule is the usual optimal rule based on the 
relative ranks of the Xj. 

In the paper of Stewart (1978), the Xj are chosen 
iid from a uniform distribution on the interval (a, f), 
denoted by U(a, f), and (a, d) is chosen from the 
three-parameter Pareto distribution. Specifically, 

(7.1) (a, O) is Pa(k, log uo), and 

X1,.., Xn, given (ae, O3, are iid U(ae, f3, 

where the three-parameter Pareto distribution, Pa(k, 
lo, uo) with k > 0 and 1l < uo, is the distribution with 
density 

g(ae,: kg log uo) 
(7.2) = k(k + l)(uo - lo)" 

(fa)k?+2 I(< ,u< ) 

where I represents the indicator function. This is a 
conjugate family of distributions for the uniform dis- 
tributions, and the posterior distribution of (a, ) 
given X1, .. *, Xj is also Pareto, 

(a , 3) , given X1, * .., Xj, 

is Pa(k + j, 1j, uj), where 

(7.3) = minJ1o,X1,...,Xj and 

Uj= maxfuo, X1, *.., Xjl. 

Thus, one can interpret the prior information as being 
equivalent to a sample of size k from a uniform distri- 
bution with a minimum of lo and a maximum of uo. 

Stewart obtained a rather striking result for this 
prior distribution of the Xj, as follows. First, the payoff 
is changed so that you win only if you stop on the 
largest Xj and if that Xj is greater than uo. Then, one 
shows that 

P (Xi Un~ I Xis* Xi 
(7.4) k + j + 1 

k + n + 1(24 = uj) 

This implies that attention can be restricted to rules 
that depend only on the relative ranks of the obser- 
vations including uo. In fact, the problem becomes 
equivalent to the secretary problem of Section 2 with 
n + k + 1 applicants, in which you start with k + 1 
applicants already rejected, the largest having value 
uO. In particular, the Bayes rule among rules that use 
all the information is the rule that rejects the first 
r'- 1 applicants, and selects the next applicant who 
is relatively best (and better than uo), where r' = 
max(1, r - k - 1) and r is the optimal value of r for 
the secretary problem of Section 2 with n + k + 1 
applicants. In addition, for all values of k, the proba- 
bility of win under an optimal rule tends to l/e as 
n -* oo! Since for sufficiently large n, the maximum Xj 
will be greater than uo with probability close to 1, this 
means that given any e > 0, there is an N and a 
distribution of the form (7.1) such that for n > N if 
(a, O) is chosen from this distribution and then the Xj 
are chosen as from a uniform distribution on (a, d), 
the probability of win in the game of googol is less 
than l/e + e. 

Thus Stewart has solved googol asymptotically for 
n large. Unfortunately, for fixed finite n, one cannot 
find, for all e > 0, e-optimal distributions for choosing 
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the Xj among the distributions he suggests. We must 
look further. The paper of Petruccelli (1980) considers 
some other distributions for the Xj. If the Xj are 
uniform on the interval (0 - 0.5, 0 + 0.5), then the 
best invariant stopping rule gives a probability of win 
asymptotic to 0.43517... as n -* oo. If the distribu- 
tions are normal with mean g and variance 1, the 
situation is even worse (from our point of view). 
The best invariant rule gives a probability of win 
asymptotic to the full-information case, namely, 
0.58016.--. Asymptotically, you might as well tell 
your opponent what g you are using. 

Finally, we come to the paper of Samuels (1981), 
who extends the results of Stewart. Samuels shows 
that in the model where the Xj are chosen from the 
uniform distribution on (a, ,B), the usual rule (the 
optimal rule based on relative ranks) is minimax for 
each n. Since the usual rule is an equalizer rule (it 
gives the same probability of success no matter how 
the Xj are chosen), we see that it is minimax against 
general, nonparametric alternatives as well. In other 
words, the usual solution achieves the lower value of 
the game. Thus, I believe that Steve Samuels deserves 
credit for having solved (the more difficult half of) the 
secretary problem as it appeared in The American 
Mathematical Monthly. 

However, this exhausts my search through the rel- 
evant literature. What can be said about the game 
of googol? I can finally give you my answer to the 
question in the title of this article. Who solved the 
secretary problem? Nobody. 

8. A RESOLUTION 

Let me hasten to apologize for this anticlimax, and 
to venture the opinion that the reason no one has 
solved this problem is that possibly no one was inter- 
ested in googol as a game, or perhaps realized there 
was a problem yet to be solved. To remedy the situa- 
tion, let us try to find the solution now. With the hint 
given by the paper of Stewart, it turns out not to be 
hard. 
I In fact, since we are considering only the best choice 

problem, we may consider a simpler class of distribu- 
tions than that of Stewart-the one-parameter uni- 
form and the two-parameter Pareto distributions. 
Thus, we take 

(8.1 0 is Pa(a, 1), and 
(8.1) X1, *.., Xn, given 0, are iid U(0, 0), 
where the two-parameter Pareto distribution, Pa(a, 
MO), is the distribution with density 

(8.2) g(0 I a, mo) = aiMa/0a+lI(0 > MO), 

where a > 0 and mo > 0. For simplicity, we take 
mO= 1. This class of Pareto distributions forms a 

conjugate prior for U(O, 0), and contains the posterior 
distribution of 0 given X1, * * *, Xj: 

0, given X1, ***, Xj, is Pa(a + j, mj), 
(8.3) where mj = max(mo, X1, *.., Xj). 

Let us pretend that we are playing a game of googol, 
I choosing the Xj and you choosing the stopping rule. 
For a given e > 0, I will choose the Xj according to 
(8.1), and find an a (sufficiently close to zero) so that 
you will win with a probability less than O5n + E, where 
O5n is the maximum probability you can guarantee 
using strategies that depend only on the relative ranks, 
On= maxr qn(r). 

In fact, I will give you an additional slight advantage 
and still keep your probability of success below 'On + 

e. I will say that you win if you stop at the largest Xj, 
or if all the Xj are no greater than 1. This will allow 
you to restrict attention to stopping rules that stop 
only at a relatively largest Xj that is greater than 1. 
The probability you win is 

(8.4) P(win) = P(all Xj c 1) + P(win*), 

where win* represents the event Imax X > 1 and you 
choose it}. The first term does not depend on your 
strategy and is easily computed: 

00 
P(all Xj < 1) = P(all Xj < 1 1 O)g(O I a, 1) do 

(8.5) 00 
= a J (1/0)n(1/o)a+1 dO 

= a/(n + a). 

Your problem is to maximize the second term of (8.4). 
First, we find the probability, conditional at stage j, 

that mj > 1 is already as large as it will get. 

P(Mi = Mn IXi, ... ,Xi) 

=E(P(Mi = Mn I a, Xi, * * Xj)J X1, .. * Xj) 

(8.6) 
= Jmj (mi/M)n-ig(O I a + j, mj) dO 

= (a + j)/(a + n) 

independent of X1, *.., Xj. This is an analog of 
Stewart's result (7.4). If you have a new candidate at 
stage j, that is if Xj = mji, it is optimal to select it if 
and only if 

a +j 
ae + n 

> P(win* with best strategy from stage j + 1 on). 

The right side of this inequality is a nonincreasing 
function of j, since any strategy available at stage j + 
2 is also available at stage j + 1. Since the left side of 
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the inequality is an increasing function ofj, an optimal 
rule may be found among rules of the form for some 
r - 1: reject the first -r - 1 applicants and accept the 
next applicant for which Xj = mj, if any. 

Using such a strategy, the probability of a win* may 
be computed as 

n 

P(win*) = E P(select j)P(j is best I select j). 
j=r 

The probability that j is best given you select it is just 
(8.6). The probability that you select j can be found 
using (8.6): 

P(select j) = P(mr1 = mjn1 and mj > mjr1) 

= a + r-1{ _a + j -1 
a +j- i \ -a +j! 

a + r-1 
(a + j - 1)(a + j) 

Combining these into (8.4) and letting 0n(r, a) denote 
the probability of a win, we find 

On(r, a) (a: + n) +( 1)jzr (a +- J1) 

Now, note that On(r, a) is continuous in a for a > 0, 
and that as a -O, n(r, a) -X-n(r) for all r= 1, ** *, 
n, where On(r) is given by (2.1). Hence, as a 0, 

maxr qn(r, a) -- maxr qn(r) = .n- 

Therefore, an c-optimal method of choosing the Xj is 
given by (8.1), where a = a(n, c) is chosen so that 

I maxr qn(r, ao) On I < e. 
This derivation may be considered an alternate 

proof of the minimaxity result of Samuels mentioned 
in Section 7. It is interesting to note that this result 
cannot be obtained using the distributions of (7.1). 
The optimal rule based on relative ranks is exactly 
Stewart's rule with k = -1; but k must be positive for 
(7.1) to be a distribution; hence, we cannot approxi- 
mate the case k = -1 with distributions. (In addition, 
the term corresponding to (8.5) does not go to zero.) 
If it seems strange that the distributions (7.1) were 
considered before the simpler distributions (8.1), the 
reason is that Stewart and Samuels treated in their 
papers problems with more general payoffs, not just 
the best choice problem, and needed a broader class 
of distributions. Unfortunately, (7.1) does not contain 
(8.1). If there is a moral to this, maybe it is that the 
simpler cases should always be examined first. 

Note Added in Proof 
Steve Samuels has sent me a copy of the book, Problems of Best 

Choice (in Russian) by B. A. Berezovskiy and A. V. Gnedin, 1984, 
Akademia Nauk, USSR, Moscow. This book is devoted solely to the 
secretary problem and its variations. It contains not only a review 

of the field but also a careful exposition and new information as 
well. In their discussion of the partial information model of Stewart, 
they use the prior distribution (8.1) and derive (8.6). However, this 
is only used to prove the asymptotic minimaxity result of Stewart. 
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Comment: Who Will Solve the Secretary 
Problem? 
Stephen M. Samuels 

Just like Johannes Kepler, who threw a new curve 
at the solar system, Tom Ferguson has given a dif- 
ferent slant to the Secretary Problem. To its many 
practitioners who ritually begin by saying "all that we 
can observe are the relative ranks," Ferguson (citing 
historical precedent), in effect, responds "let's not take 
that assumption for granted." The heart of his paper, 
as I see it, is the following Ferguson Secretary Problem: 

Given n, either find an exchangeable sequence of 
continuous random variables, X1, X2, *---, Xn, for 
which, among all stopping rules, r, based on the X's, 

sup P{XT = max(Xl, X2, XXn), 

is achieved by a rule based only on the relative ranks 
of the X's-or prove that no such sequence exists. 

Ferguson has come within epsilon of solving this 
problem. He has exhibited exchangeable sequences, 
for each n and e > 0, such that the best rule based 
only on relative ranks has success probability within 
e of the supremum. But he has left open the question 
of whether this supremum can actually be attained. 

For n = 2, the answer is easy; there is no such 
sequence. The following elementary argument, which 

Stephen M. Samuels is Professor of Statistics and 
Mathematics at Purdue University. His mailing ad- 
dress is: Department of Statistics, Mathematical Sci- 
ences Building, Purdue University, West Lafayette, 
Indiana 47907. 
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