
O R P R A C T I C E

SCHEDULING A MAJOR COLLEGE BASKETBALL CONFERENCE

GEORGE L. NEMHAUSER
Georgia Institute of Technology, Atlanta, Georgia

MICHAEL A. TRICK
Carnegie Mellon University, Pittsburgh, Pennsylvania

(Received February 1997; revision received May 1997; accepted July 1997)

The nine universities in the Atlantic Coast Conference (ACC) have a basketball competition in which each school plays home and
away games against each other over a nine-week period. The creation of a suitable schedule is a very difficult problem with a myriad
of conflicting requirements and preferences. We develop an approach to scheduling problems that uses a combination of integer
programming and enumerative techniques. Our approach yields reasonable schedules very quickly and gave a schedule that was
accepted by the ACC for play in 1997–1998.

The Atlantic Coast Conference (ACC) is a group of
nine universities in the southeastern United States

that compete against each other in a number of sports.
The most important sport for the ACC in terms of overall
revenue is basketball. The ACC and its universities earned
in excess of $30 million in basketball revenue in 1995.
Almost all of this revenue came from television and radio
networks showing the games and from gate receipts.

These revenue streams are affected by the scheduling
of the teams. Television networks need a steady stream of
“high quality” games. Spectators want neither too few nor
too many home games in any period.

In addition to these revenue aspects, there are many
other effects that a schedule can have. Some teams in the
ACC schedule games with non-ACC opponents during
the season and need the ACC schedule not to conflict.
Some teams are traditionally strong teams, and no team
wishes to play a series of such teams consecutively. Teams
also have preferences that last from year to year. For in-
stance, every team likes to have the final game of the
season at home. Since it is impossible to meet this request
for every team every year, it is important that each team
does not have consecutive years finishing with away games.
These are just a few of the examples of the schedule re-
quirements and effects.

Until the 1996–1997 schedule, scheduling was done by
hand in the conference office. This arduous process cre-
ated adequate schedules, but was getting more difficult due
to the addition of a new team in 1991–1992 and increased
attention to the television schedule requests. In
1996–1997, a constraint programming approach was at-
tempted, with limited success for reasons described in

Section 3. For the 1997–1998 season, we were approached
to create the schedule. One of the schedules we recom-
mended was accepted. While this paper concentrates on
the men’s basketball schedule, we also provided the ACC
with a women’s basketball schedule that was accepted.

In the past few years there have been a number of pa-
pers on sports scheduling. We begin by giving a summary
and classification of sports scheduling systems that allows
us to contrast our scheduling system with others. We then
detail the requirements of an ACC schedule and show how
our scheduling system specializes in this case. Finally, we
present the schedule accepted by the ACC and discuss the
difficulties in getting it.

1. SPORTS SCHEDULING

Sports schedules come in two broad types: temporally con-
strained schedules and temporally relaxed schedules. In a
temporally constrained schedule the number of slots, or
time periods in which a game may appear, is equal to the
number of games that each team must play plus any nec-
essary byes for leagues with an odd number of teams. For
instance, a double round-robin tournament has every team
play every other team twice: once at home and once away.
Such a tournament among 9 teams requires at least 18
slots. A temporally constrained schedule has 18 slots avail-
able. A temporally relaxed schedule has more than 18
slots, and perhaps significantly more.

In a temporally relaxed schedule, it is possible to assign
games sequentially and end up with a feasible schedule.
Furthermore, local improvement heuristics seem prevalent
in this environment. Examples of this include Bean and

Subject classifications: Industries, recreation/sports: college basketball. Production/scheduling, applications: sports scheduling.
Area of review: OR PRACTICE.

1
Operations Research 0030-364X/98/4601-0001 $05.00
Vol. 46, No. 1, January–February 1998 q 1998 INFORMS

Birge (1980) in scheduling the National Basketball Associ-
ation; Ferland and Fleurent (1991) in scheduling the Na-
tional Hockey League and other hockey leagues; and
Armstrong and Willis (1993), Willis and Terrill (1994),
and Wright (1994), all of whom studied scheduling cricket
matches.

In this paper, we are concerned with temporally con-
strained schedules. In such schedules, greedily assigning
games typically leads to infeasibilities. Furthermore, while
some local improvement heuristics have been found, they
tend to be rather limited in scope and heavily dependent
on finding a good initial solution. Examples of such sched-
ules include the work of Campbell and Chen (1976) and
Ball and Webster (1977) for scheduling college basketball,
Schreuder (1992) for Dutch football, Cain (1977) for ma-
jor league baseball, and Russell and Leung (1994) for a
minor league baseball league. All of these use the same
framework for finding good schedules. Since we also use
this framework, we examine it in some detail.

We can divide the search for a good schedule into three
steps:

STEP 1. A pattern is a string consisting of H (home), A
(away), and B (bye), of length equal to the number of slots
in the schedule. In Step 1, we find a set of patterns with
cardinality equal to the number of teams. This set is called
a pattern set.

STEP 2. In Step 2, we assign games to the pattern set
consistent with the HAB letters. The result from this stage
is a timetable.

STEP 3. In Step 3, we assign the teams to the patterns.
Together with the timetable, this gives a schedule.

For instance, for a four-team round robin, with teams a,
b, c, d, one method of finding a schedule is to choose the
pattern set:

1:HHA
2:AHA
3:HAH
4:AAH

This means, for example, that team 1 plays at home in
slots 1 and 2 and away in slot 3. However, we have not yet
specified which team among {a, b, c, d} is team 1.

We then assign games consistent with this pattern set to
get the timetable:

1:(22)(23)(4)
2:1(24)3
3:(24)1(22)
4:32(21)

(where x in row i means i is at x and (2x) in row i means
x is at i).

Then we would assign teams to patterns based on, say,
their preferences for being home in the given slots, to get
the schedule:

d:(2b)(2a)c
b:d(2c)a
a:(2c)d(2b)
c:ab(2d)

Any round-robin schedule can be extended to a double
round robin by mirroring. In a mirrored schedule, a round-
robin schedule is repeated, reversing the home and away
teams. In the above example, a mirrored double round-
robin tournament would be:

d:(2b)(2a)cba(2c)
b:d(2c)a(2d)c(2a)
a:(2c)d(2b)c(2d)b
c:ab(2d)(2a)(2b)d

Scheduling systems differ in how each step is done, and
in which order. For example, Russell and Leung (1994)
began with Steps 1 and 2 and used combinatorial design
theory to give timetables, to which they then assign teams
in Step 3 using enumeration. Cambell and Chen (1976)
began by combining their 10 teams into 5 pairs and then
used a Latin square to implement Steps 1 and 2. In their
model, teams had no preferences on patterns, so the final
Step 3 was arbitrary. Schreuder (1992) also used combina-
torial design for Steps 1 and 2, and then formulated Step 3
as a quadratic assignment problem. This was heuristically
solved by reduced enumeration. Finally, Cain (1977) com-
bined Steps 1 and 3, assigning teams to patterns, and then
completed Step 2 by placing in all “forced games” and
using enumerative methods for the remainder.

The main problem with this approach is the difficulty in
finding a solution to Steps 1 and 2. DeWerra (1980, 1988)
and others in combinatorial design (Mendelsohn and Rosa
1985) have made great advances in determining feasible
timetables, but there is no known characterization of all
feasible timetables. The known timetables all revolve
around some particular property, like maximizing or mini-
mizing the number of alternations of home and away in the
patterns, which may not be critical or appropriate in any
particular application. Furthermore, finding feasible time-
tables is so laborious that very few are known for any given
problem size.

In this work, we avoid the use of combinatorial design
and generate many timetables by use of integer program-
ming and enumeration. This gives us many feasible
timetables (826 in this case) in a very short period of
time. We begin with Step 1, which we solve by enumera-
tion combined with integer programming. Step 2 is then
solved by integer programming. Finally, Step 3 is solved by
enumeration.

The factors that go into the decision of the order in
which to do the steps include size of problem (what can be
enumerated? what leads to problems that are too large to
solve at all?), specificity of team requests, and desired ob-
jective. For instance, a schedule that depends on team
travel may need to identify teams with patterns earlier in
the process.

2 / NEMHAUSER AND TRICK

In our case, the size of the problem and the require-
ments on patterns made enumerating the feasible patterns
relatively easy. Furthermore, since the team requests
were relatively few, we could delay assigning teams to pat-
terns until late in the process.

After going into detail on the particular requirements of
the conference, we describe each step of the scheduling
process.

2. ACC SCHEDULE REQUIREMENTS

Almost every paper in the literature of sports scheduling
comments on the wide variety of constraints and objectives
that occur in any real sports scheduling problem. For in-
stance, Ferland and Fleurent (1991), when discussing
scheduling the National Hockey League, begin with issues
like availability of arenas, game pattern restrictions (no
more than two games in three days, and so on), times
between revisits, and distance restrictions, and end with
“etc.,” denoting a large number of other constraints that
are critical to the feasibility of a schedule. This paper is no
different, since there are many constraints that go into a
feasible ACC schedule.

The ACC consists of nine universities: Clemson (Clem),
Duke (Duke), Florida State (FSU), Georgia Tech (GT),
Maryland (UMD), North Carolina (UNC), North Carolina
State (NCSt), Virginia (UVA), and Wake Forest (Wake).
Every year, their basketball teams play a double round-
robin tournament in January and February (possibly in-
cluding a game in December and/or March). Every team
plays every other team twice, once at home and once away.

In general, every team will play twice in a week, often on
Wednesday and Saturday. The exact day may differ, how-
ever, so we will refer to the two slots as the “weekday” and
“weekend” slots. Since there are an odd number of teams,
there will be one team with a bye in each slot. The length
of the schedule is set up in such a way that there will
be four conference games in each slot. This implies that
the schedule is 9 weeks long, and consists of 18 slots. The
schedule always ends on a weekend, so the first slot is a
weekday slot. The starting slot in 1997–1998 will occur in
December and is denoted slot 0. The final slot is therefore
slot 17.

Every team plays eight slots at home, eight away, and
two bye slots. Teams generally value weekend slots higher
than weekday slots. To be fair to the teams, we require
each team to have four weekend home slots, four weekend
away slots, and one weekend bye slot.

That gives the basic structure of the schedule. There are
a number of additional constraints and objectives. We clas-
sify these in a way that corresponds to the algorithmic step
at which they are enforced.

2.1. Pattern Constraints

The pattern of home games and away games is important
due to wear and tear on the teams, issues of missing class
time, and spectator preferences. No team should play

more than two away games consecutively, nor more than
two home games consecutively. A bye is generally thought
of as an away game, but a series away-bye-away is not as
bad as three consecutive aways. Similarly, home-bye-
home-home is not illegal, but it is definitely not preferred.

Just as a long series of away slots is not preferred, a long
series of away weekend slots is also not liked. Rules similar
to the above apply to weekend slots (no more than two at
home consecutively, and so on). In addition, the first five
weekends are used for recruiting future student-athletes,
so each team must have at least two home weekends or
one home and one bye weekend among the first five. A bye
may be acceptable here because the open slot could be
used to schedule a nonconference home game.

The final week of the season has great importance for
all teams, so no team can be away for both slots in the final
week. Ideally, no team will be away for the first two slots.

These constraints are enforced in Step 1 of our
algorithm.

2.2. Game Count Constraints

Another set of constraints that is enforced in Step 1 is the
basic requirement that as many teams play in a slot as
possible. This implies that there are four home teams in a
slot, four away teams, and one team with a bye.

2.3. Team Pairing Constraints

Since every team plays two games against every other
team, the conference desires a large separation between
meetings. A separation of nine slots can be achieved by
mirroring a round-robin schedule. We will see that a com-
plete mirror is impossible in our case, but a similar concept
will be used to create large separation. These separation
constraints are enforced in Step 1 and Step 2. All others in
this section are enforced in Step 3.

The final weekend of the season is the most important
slot, and is reserved for “rival” games: the pairings Duke-
UNC, Clem-GT, NCSt-Wake, and UMD-UVA are tradi-
tionally played on that day. With the addition of FSU,
which has no traditional rival yet, not all the rival games
may be played, but if neither of the two teams in a rival
pair has the bye in the last slot, then they must play each
other. For example, if UMD has the bye in the last slot,
then the pairings for the final slot are Duke-UNC, Clem-
GT, NCSt-Wake, and FSU-UVA.

Duke-UNC is the most critical pairing in the schedule. It
must occur in slot 17 and also needs to occur in slot 10. It is
this latter requirement, caused by the preferences of a
television network, that prohibits full separation of the
pairwise meetings.

The preferences of the television networks are perhaps
the most convoluted. The ACC has television contracts
with both ESPN and Raycom, and both broadcast games
throughout the season. ESPN made a request that UNC
play Clem in slot 1, and otherwise is looking for appealing
games in slots 1, 3, and 5. Raycom had a much more
extensive set of preferences for February. Individual games

3NEMHAUSER AND TRICK /

are considered either A games, B games, or neither. Table
I summarizes the game evaluation, where an “A” entry
denotes an A game, with A1 meaning the game is valued
that way only if it appears during the week, and A2 denot-
ing games that are valued only on the weekend. B games
are similarly noted. Each slot in February is either an
A-slot (best), B-slot, or bad-slot (worst). If an A game
appears in a slot, or if two B games appear, then the slot is
an A-slot. If one B game appears, it is a B-slot. If no A or
B games appear, it is a bad-slot.

Finally, since we require both Duke-UNC games to be
in February, some pairings must occur twice in January. To
avoid popular pairings from occurring twice in January,
the following pairings are specified to occur at least once
in February: Wake-UNC, Wake-Duke, GT-UNC, GT-
Duke.

2.4. Team Requirement Constraints

Other slots are reserved for other team pairings and re-
quirements. For 1997–1998, these requirements are that
Duke have a bye in slot 15, Wake not be at home in slot
16, and Wake have a bye in slot 0.

Clem, Duke, UMD, and Wake ended the 1996–1997
season with an away game, so none should end with an
away game in 1997–1998. Similarly, Clem, FSU, GT, and
Wake began with an away game in 1996–1997 so should
not begin with one in 1997–1998. Neither FSU nor NCSt
should end with a bye, since they have recently done so,
nor should UNC begin with a bye.

The constraints are enforced in Step 3 of our algorithm
and are used to shorten the enumeration time.

2.5. Opponent Ordering Constraints

In almost every case, a team returns home after an away
game. Therefore, there are no travel constraints per se.
However, there is a restriction on a sequence of visits
not related to travel distance. For 1997–1998, teams
have a requirement on the order in which they face UNC,
Duke, and Wake. No team should play the three consecu-
tively, and no team should play UNC and Duke con-
secutively. This is due to the traditional and recent
strength of the programs. This is enforced in Step 3.

2.6. Other Constraints

While that is the entire list of explicit requirements, there
are other aspects that are harder to quantify. In addition,
there are several things listed above that are “not pre-
ferred” or otherwise permitted but not liked. One of us
(GLN) has worked with the ACC and can evaluate sched-
ules for some of these aspects. Schedules that pass his
evaluation get sent on to the ACC office where the Asso-
ciate Director for ACC Basketball is able to evaluate a
small number of schedules and to choose the best.

3. CREATING THE SCHEDULE

The previous section, with its laundry list of requirements,
likes, and dislikes, makes the job of creating a schedule
formidable. For the 1996–1997 schedule, the ACC used a
consultant who used constraint programming to create the
schedule shown in Figure 1, where shaded entries are
home games and rectangles represent weekend slots.

This schedule had different requirements than that out-
lined above, and some of its defects, including the uneven-
ness in weekends and the consecutive away sequences,
were caused by some last-minute flipping of games. Fun-
damentally, however, the schedule is a poor one due to
lack of separation of meetings, an over-reliance on home-
bye-home(2home) sequences, and an inability to meet
television needs. We are not claiming, of course, that this
performance inevitably results from constraint program-
ming. A more concerted effort would doubtless create
much more satisfactory schedules.

We now describe each step of our algorithm with an
emphasis on how it was used for the ACC. This process is
illustrated by the flow chart in Figure 2 that also summa-
rizes which constraints are enforced in each step.

3.1. Step 1: Find Patterns and Pattern Sets

This step, occurring early in the process, is critical to the
success of the system. If we generate many pattern sets
that do not lead to feasible schedules, much time could be
wasted. On the other hand, this step must be powerful
enough to generate enough pattern sets to “survive”
through the following steps.

We divide this step into two phases. The first issue is
how to generate patterns that have a reasonable chance of
being included in a feasible schedule, with a particular
emphasis on the separation requirement. Clearly, a pattern
needs to have an appropriate length (18), number of H, A,
and B (8, 8, and 2, respectively), number of H, A, and B in
the weekend slots (4, 4, 1), limits on consecutive A and
consecutive H (2), and other limits on basic structure given
in the previous section.

A collection of nine such patterns would have little
chance, however, of leading to a feasible schedule. It
seems that almost invariably there is at least one pair, and
usually many pairs, of teams whose meetings are insuffi-
ciently separated. We therefore impose a restriction that
the schedule be “almost-mirrored.”

Table I
Game Quality

Home
Away

Clem Duke FSU GT UMD UNC NCSt UVA Wake

Clem — B1/A2
Duke — B A A2 B B
FSU —
GT B1 — B A1 B
UMD A1 B1 — A1 B1
UNC B1 A1 B B —
NCSt B B — B
UVA B — B1
Wake B B B B —

4 / NEMHAUSER AND TRICK

The pattern for a mirrored schedule for this problem
has a specific structure: slot i is an H (A, B, respectively) if
and only if slot i 1 9 mod 18 is an A (H, B, respectively).
So slots 0 and 9 mirror each other, as do 1 and 10 and so
on. In particular, slots 8 and 17 mirror each other. Since
we are required to have Duke play UNC in both slots 10
and 17, we will require all teams to mirror in slots 10 and
17. We do that by “flipping” slots 8 and 10 in a mirror
schedule, so slot 1 now mirrors 8 and 10 mirrors 17. We
can also flip other slots in order to generate additional
patterns. We were most successful by also flipping slots 7
and 9, so slot 0 mirrors slot 7 and 9 mirrors 16. Note that
in order to have each team with a weekend bye, it is nec-
essary to have even slots mirror odd slots.

With this restriction, we can generate all feasible pat-
terns by generating patterns of length 9 consisting of Hs,
As, and one B, mirroring each, and flipping slots 8 and 10,
and 7 and 9. There are only 9(28) 5 2304 such patterns, so
we can enumerate them, discarding infeasible patterns.
(This is box A in Figure 2.) With the restrictions we have,
we generated 38 feasible patterns. There are some simplifica-
tions made. For example, since we know Duke both has a bye
in period 15 and is home in period 17, we can discard any
pattern with a bye in period 15 and an away in period 17.

We need now to find sets of nine patterns that have a
reasonable chance of resulting in feasible timetables (see
box B in Figure 2). We find these sets by integer program-
ming. There are some obvious constraints on the patterns:

Figure 1. 1996–1997 official schedule.

5NEMHAUSER AND TRICK /

for instance, in every slot there must be four chosen pat-
terns with an H, four with an A, and one with a B. We
would, in general, also like patterns that differ in many
places so that there are many places to assign games in
Step 2. With the mirroring we require, however, all pat-
terns differ in at least four places, which most of the time
turns out to be sufficient for later stages to be successful.

There are less preferred patterns in our set. For in-
stance, a pattern that corresponds to a team beginning
with two away games is definitely not preferred. It turns
out, with the restrictions we have so far, there is no
feasible pattern set that does not include at least one
such pattern, but we restricted ourselves to only one such
bad pattern.

This gives the following integer program. Let P be the
set of patterns and T be the set of slots. Create a variable
xi for each pattern i that will be 1 if the pattern is in the set
and 0 otherwise. For pattern i and slot k let hik be 1 if
pattern i has an H in slot k; 0 otherwise. Similarly, let aik

be 1 if pattern i has an A in slot k; 0 otherwise. Finally, let
bi be 1 if pattern i is a less preferred pattern, and 0 other-
wise. The formulation is

Minimize O
i[P

b i x i

subject to

(Home) O
i[P

h ik x i 5 4 for all k [T,

(Away) O
i[P

a ik x i 5 4 for all k [T,

x i [$0, 1% for all i [P .

We generated all feasible solutions by optimizing with
respect to this objective, then including a constraint that
precludes the resulting solution (¥i[S xi ¶ 8 for solution
set S worked fine) and reoptimizing until infeasibility. In
this case, infeasibility means that the objective goes to 2,
denoted two less preferred patterns. This small (38 vari-
able, 18 constraint) integer program solves in under 1
minute on a Sun SPARCstation 20, with CPLEXqversion

4.0 (CPLEX, 1995) as the integer programming solver.
This led to 17 pattern sets.

3.2. Step 2: Finding Timetables

Given a pattern set, we next assign games (see box C in
Figure 2). This, again, is done by integer programming.
In this case, we have a variable xijk denoting pattern i
plays at pattern j in slot k. This variable is defined only
if the ith pattern has an A in its kth position, and the jth
pattern has an H in its kth position. Let S be the set
of patterns and F be the set of feasible (i, j, k) triplets.

This integer program has an arbitrary objective, since at
this point we still have not identified teams with patterns,
so there are no preferences to include, and a small number
of constraints. Of course, every pattern must play at every
other pattern (the visit constraints in the following formu-
lation), and the “almost-mirroring” condition must hold
(mirror constraints). The final set of constraints force a
team to play at most one game in a slot (one game con-
straints). The resulting formulation is:

Minimize O
~i, j,k![F

x ijk

subject to

(Visit) O
$k:~i, j,k![F%

x ijk 5 1 for all i [S, j [S, i Þ j,

(One Game)

O
$ j:~i, j,k![F%

x ijk

1 O
$ j:~ j,i,k![F%

x jik < 1 for all i [S, k [T,

(Mirror)

x ijk 5 x jik9 for all ~i, j, k! [F, ~ j, i , k9! [F,

k and k9 must mirror,
x ijk [$0, 1% for all ~i , j, k! [F.

This leads to an integer program with 234 constraints
and approximately 300 variables (the exact number de-
pends on the pattern set). Again this can be solved quickly,

Figure 2. Algorithm flow chart.

6 / NEMHAUSER AND TRICK

in under 10 minutes on a SPARCstation 20 using
CPLEXq4.0 as the integer programming solver, and con-
straints can be added to generate all feasible solutions. The
17 feasible pattern sets generated 826 feasible timetables.

3.3. Step 3: Assigning Teams to Patterns

Our next step is to take a timetable and assign teams to
patterns in the pattern set (see box D in Figure 2). This
process, the most time-consuming part of the procedure, is
done through enumeration. There are 9! 5 362,880 assign-
ments of teams to patterns for each timetable. Each of
these is checked for feasibility (are the finishing games ok?
are there consecutive games against Duke-UNC?) and for
preferred aspects (how many slots are A-slots for TV? how
many are bad slots?).

We needed to look at 826p362,880 5 299,738,880 possi-
ble assignments, which took about 24 hours on a Sun
SPARCstation-20. This led to 17 feasible schedules. From
those schedules, we used dominance aspects to reduce the
list to three schedules for submission to the ACC. The
ACC, consulting with their television partners, then chose
one as the official schedule. This process is box E in Figure
2. The accepted schedule is shown in Figure 3.

4. POSSIBLE EXTENSIONS

There are a number of interesting extensions and ques-
tions. One important issue is to characterize the feasible
pattern sets. We have used the bare minimum constraints
in Step 1, and many of the generated sets are infeasible for

Figure 3. 1997–1998 official schedule.

7NEMHAUSER AND TRICK /

Step 2. It would be interesting to have a characterization
of feasible pattern sets or to show that no compact charac-
terization exists by showing, for instance, that the question
of determining if a set is feasible is NP-complete. Further-
more, not every sports schedule is a round-robin, thus how
can feasible patterns and pattern sets be characterized for
arbitrary game requirements?

Another related question involves the computational ef-
fort at each of the steps. Can any of our integer programs
or enumerative steps be replaced by more efficient algo-
rithms? The limiting factor in our approach is the final
need to enumerate the possible assignments of teams to
patterns of the timetable. It would be possible to extend
this approach directly to 10 or 11 teams by generating
fewer timetables by, for instance, having more restrictions
in the pattern or game assignment steps. It would also be
possible to extend these results to slightly larger leagues by
a more aggresive pruning of infeasible assignments. For
instance, if we first assigned Duke and UNC to patterns,
then we could immediately identify cases where some team
plays each consecutively, and we could ignore any such
permutation. Schreuder (1992) points out that the final
assignment of teams to patterns is a quadratic assignment
problem, so any methods for that problem apply here. For
larger problems, a heuristic approach, like a greedy assign-
ment followed by 2-exchanges, may lead to adequate
schedules.

Also, note that while the majority of the constraints used
to create this schedule were treated as constraints, there
are many opportunities to use cost coefficients instead. For
instance, while we required no more than one “less pre-
ferred” pattern in our set when finding the pattern set, we
could also have had a richer evaluation that gives a cost to
each pattern, and then minimize the total cost of the pat-
tern set. Such flexibility is particularly valuable in problems
that have many feasible schedules.

5. CONCLUSIONS

Of course, our exposition represents an impossibly clean
view of the process. In reality, we did not generate just 300
million possible schedules to get down to 17, then 3, then
1. We actually generated, conservatively, 10 billion possi-
ble schedules and iterated many times between the au-
thors, and between the authors and the ACC. Many of the
restrictions that are listed in Section 2 actually arose late in
the process, as the ACC and the television networks clari-
fied and modified their requests. Clearly, the ACC and, we
would guess, most conferences find it difficult to articulate
what they really require in a schedule. The best way to
determine those needs is to have a system that can quickly
generate sample schedules and have the decision makers
update their requirements based on those schedules. The
system we created is capable of turning around schedules
in a day, and that speed was instrumental in its success.

The main algorithmic advance of this paper is to point
out that an appropriate combination of enumeration and
integer programming is sufficient to generate many suit-
able patterns, replacing the tedious and difficult combina-
torial design techniques. The success of this approach is
shown by creating real schedules, meeting and exceeding
the requirements of a real college basketball conference.

ACKNOWLEDGMENT

The authors would like to thank Fred Barakat of the At-
lantic Coast Conference for his patience and efforts in
helping us understand the real issues in scheduling the
conference and in pointing out the flaws of our early
schedules. We would also like to thank the referees for
helpful and prompt suggestions for improvement.

REFERENCES

ARMSTRONG, J. AND R. J. WILLIS. 1993. Scheduling the Cricket
World Cup—A Case Study. J. Opnl. Res. Soc. 44,
1067–1072.

BALL, B. C. AND D. B. WEBSTER. 1997. Optimal Scheduling for
Even-Numbered Team Athletic Conferences. AIIE
Trans. 9, 161–169.

BEAN, J. C. AND J. R. BIRGE. 1980. Reducing Traveling Costs
and Player Fatigue in the National Basketball Associa-
tion. Interfaces, 10, 98–102.

CAIN, W. O., JR. 1977. A Computer Assisted Heuristic Ap-
proach Used to Schedule the Major League Baseball
Clubs. In Optimal Strategies in Sports, S. P. Ladany and
R. E. Machol (eds.). North Holland, Amsterdam, 32–41.

CAMPBELL, R. T. AND D.-S. CHEN. 1976. A Minimum Distance
Basketball Scheduling Problem. In Management Science
in Sports, R. E. Machol, S. P. Ladany, and D. G. Morri-
son (eds.). North-Holland, Amsterdam, 15–25.

CPLEX OPTIMIZATION, INC. 1995. “Using the
CPLEXqCallable Library.” Tahoe, NV.

DE WERRA, D. 1980. Geography, Games, and Graphs. Discrete
Appl. Math. 2, 327–337.

DE WERRA, D. 1988. Some Models of Graphs for Scheduling
Sports Competitions. Discrete Appl. Math. 21, 47–65.

FERLAND, J. A. AND C. FLEURENT. 1991. Computer Aided
Scheduling for a Sports League. INFOR, 29, 14–24.

MENDELSOHN, E. AND A. ROSA. 1985. One-factorization of the
Complete Graph—A Survey. J. Graph Theory, 9, 43–65.

RUSSELL, R. A. AND J. M. LEUNG. 1994. Devising a Cost Effec-
tive Schedule for a Baseball League. Opns. Res. 42,
614–625.

SCHREUDER, J. A. M. 1992. Combinatorial Aspects of Con-
struction of Competition Dutch Professional Football
Leagues. Discrete Appl. Math. 35, 301–312.

WILLIS, R. J. AND B. J. TERRILL. 1994. Scheduling the Austra-
lian State Cricket Season Using Simulated Annealing. J.
Opnl. Res. Soc. 45, 276–280.

WRIGHT, M. 1994. Timetabling County Cricket Fixtures Using
a Form of Tabu Search. J. Opnl. Res. Soc. 45, 758–770.

8 / NEMHAUSER AND TRICK

