
Algorithm Design, Assignment 1

Akiko Takeda (Problems are given by Yutaro Yamaguchi)

Due date: December 9, 2014

Choose two problems from the below and solve them. You must choose one from
1–3, and the other from 4–6. The notation O (f(x)) or Ω (f(x)) means that cf(x) is an
upper-bound or lower-bound, respectively, for some constant c.

1. Consider the following local-improvement algorithm for finding a stable matching
between two disjoint sets M and W of the same size.

Step 0. Choose an arbitrary perfect matching S ⊆M ×W .

Step 1. While there exists an instability (blocking pair) with respect to S, repeat
the following procedures: choose an arbitrary instability (m,w) ∈ M × W ,
and update S ← (S \ {(m,w′), (m′, w)}) ∪ {(m,w), (m′, w′)}, where m′ ∈ M
and w′ ∈ W satisfy (m,w′), (m′, w) ∈ S.

This algorithm does not always halt. Prove it by using the following instance.

For M = {a, b, c} and W = {x, y, z}, the preference of m ∈M is given as the total
order ≺m on W , and that of w ∈ W as ≺w on M as follows:

y ≺a x ≺a z, x ≺b z ≺b y, x ≺c y ≺c z

a ≺x c ≺x b, c ≺y a ≺y b, a ≺z c ≺z b.

Here, e.g., the relation y ≺a x means that a prefers y to x.

2. It is well-known that a maximum weight spanning tree of a connected undirected
graph with nonnegative weight on each edge can be found by a greedy algorithm
(check each edge e in decreasing order of the weights, and select e unless e and some
selected edges form a cycle). Related to this, solve one of the following problems
(a) and (b).

(a) Relax the spanning-tree constraint so that a set of selected edges can contain
at most one simple cycle (a cycle without intersecting the same vertex in be-
tween). Prove that a similar greedy algorithm (check each edge e in decreasing
order of the weights, and select e unless e and the selected edges contain at
least two different simple cycles) correctly returns an optimal solution in this
case.

(b) Relax the spanning-tree constraint so that a set of selected edges can contain
at most two simple cycle. Show an example that a similar greedy algorithm
(check each edge e in decreasing order of the weights, and select e unless e and
the selected edges contain at least three different simple cycles) fails to return
an optimal solution in this case.

1

3. Let a, b be positive integers with 1 < a < b. Consider the situation when we pay
an arbitrary positive-integer amount of money by using only three kinds of coins
whose values are 1, a, b. Show two pairs (a, b) such that for one pair the following
greedy algorithm always returns a payment with the fewest coins, and for the other
pair it does not always returns such a payment.

Greedy Algorithm Use as many coins as possible in decreasing order of the
values, i.e., for the payment x, use ⌊x/b⌋ b-coins and ⌊(x− b ⌊x/b⌋) /a⌋ a-coins, and
pay the rest by 1-coins.

4. Let n,N be positive integers. Given N coins among which exactly one is fake and
lighter than the others, we want to find the fake coin by using a balance which can
just compare the weights of two sets of coins. Show the maximum N such that
n comparisons are sufficient to find the fake coin among N coins, and prove the
correctness.

5. Let n, k be positive integers with k ≤ n. The following algorithm is to find the k-th
minimum integer among given n distinct integers.

Find(S, k)

Input: A set S of n distinct integers, and an integer k with 1 ≤ k ≤ n.

Output: The k-th minimum integer in S.

Step 0. If n < 25, sort all integers in S in increasing order, and return the k-th
integer of the sorted sequence.

Step 1. Partition S into subsets S1, S2, . . . , Sl with |S1| = |S2| = · · · = |Sl−1| = 5
and 1 ≤ |Sl| ≤ 5.

Step 2. For each i = 1, 2, . . . , l, let mi be the median of the integers in Si (here,
defined as the ⌈|Si|/2⌉-th minimum integer), and M ← {mi ∈ S | i =
1, 2, . . . , l }.

Step 3. By Find(M, ⌈l/2⌉), compute the median m of the integers in M .

Step 4. Let S− ← { s ∈ S | s ≤ m }, S+ ← { s ∈ S | s > m }.
Step 5. If |S−| ≥ k, return the output of Find(S−, k). Otherwise (i.e., if |S−| < k),

return the output of Find(S+, k − |S−|).

Prove that this algorithm computes the k-th minimum number in O(n) time, along
the following procedures.

(a) Confirm that the output is correct.

(b) Show upper-bounds of |S−| and |S+| using n.

(c) Let T (n) denote the computational time of Find(S, k). Using this T , estimate
the computational time of each step.

(d) Based on the above estimations, show a recurrence relation (inequality) for
T (n), and prove T (n) = O(n).

6. Let n be a positive integer. Given a sequence a1, a2, . . . , an of n integers, we want to
find a consecutive subsequence whose sum is maximum. If you check all patterns of
the starts and ends of consecutive subsequences, the combination is

(
n+1
2

)
= Ω(n2),

2

and hence it takes Ω(n2) time. Based on the following divide-and-conquer idea,
construct an algorithm (show concrete procedures) that returns a maximum-sum
consecutive subsequence in O(n log n) time, and prove the correctness.

Divide Partition the given sequence into two consecutive subsequences at the cen-
ter (or near the center).

Conquer Find maximum-sum consecutive subsequences of the left and right con-
secutive subsequences separated above and one across the partitioning point,
and adopt one with the sum maximum among the three.

3

