Algorithm Design, Assignment 1

Akiko Takeda (Problems are given by Yutaro Yamaguchi)
Due date: December 9, 2014

Choose two problems from the below and solve them. You must choose one from
1-3, and the other from 4-6. The notation O (f(x)) or Q (f(z)) means that cf(z) is an

upper-bound or lower-bound, respectively, for some constant c.

1. Consider the following local-improvement algorithm for finding a stable matching
between two disjoint sets M and W of the same size.

Step 0. Choose an arbitrary perfect matching S C M x W.

Step 1. While there exists an instability (blocking pair) with respect to S, repeat
the following procedures: choose an arbitrary instability (m,w) € M x W,
and update S < (S'\ {(m,w’), (m',w)}) U{(m,w), (m',w')}, where m" € M
and w' € W satisty (m,w’), (m',w) € S.

This algorithm does not always halt. Prove it by using the following instance.

For M = {a,b,c} and W = {x,y, 2z}, the preference of m € M is given as the total
order <, on W, and that of w € W as <, on M as follows:

Y <qg T =g 2, T <p 2 =<pY, T <Y <¢ %
a <z c=<gb, c=ya=yb, a<,c=,b.

Here, e.g., the relation y <,  means that a prefers y to z.

2. Tt is well-known that a maximum weight spanning tree of a connected undirected
graph with nonnegative weight on each edge can be found by a greedy algorithm
(check each edge e in decreasing order of the weights, and select e unless e and some
selected edges form a cycle). Related to this, solve one of the following problems

(a) and (b).

(a) Relax the spanning-tree constraint so that a set of selected edges can contain
at most one simple cycle (a cycle without intersecting the same vertex in be-
tween). Prove that a similar greedy algorithm (check each edge e in decreasing
order of the weights, and select e unless e and the selected edges contain at
least two different simple cycles) correctly returns an optimal solution in this
case.

(b) Relax the spanning-tree constraint so that a set of selected edges can contain
at most two simple cycle. Show an example that a similar greedy algorithm
(check each edge e in decreasing order of the weights, and select e unless e and
the selected edges contain at least three different simple cycles) fails to return
an optimal solution in this case.



3. Let a,b be positive integers with 1 < a < b. Consider the situation when we pay
an arbitrary positive-integer amount of money by using only three kinds of coins
whose values are 1,a,b. Show two pairs (a,b) such that for one pair the following
greedy algorithm always returns a payment with the fewest coins, and for the other
pair it does not always returns such a payment.

Greedy Algorithm Use as many coins as possible in decreasing order of the
values, i.e., for the payment z, use |z/b] b-coins and | (z — b|z/b|) /a] a-coins, and
pay the rest by 1-coins.

4. Let n, N be positive integers. Given N coins among which exactly one is fake and
lighter than the others, we want to find the fake coin by using a balance which can
just compare the weights of two sets of coins. Show the maximum N such that
n comparisons are sufficient to find the fake coin among N coins, and prove the
correctness.

5. Let n, k be positive integers with £ < n. The following algorithm is to find the k-th
minimum integer among given n distinct integers.
Find(S, k)
Input: A set S of n distinct integers, and an integer £ with 1 < k < n.
Output: The k-th minimum integer in S.

Step 0. If n < 25, sort all integers in S in increasing order, and return the k-th
integer of the sorted sequence.

Step 1. Partition S into subsets Si,Ss, ..., S with |Si| = [S2| =+ =|S,_1] =5
and 1 S |Sl’ S 5.

Step 2. For each i = 1,2,...,1, let m; be the median of the integers in S; (here,
defined as the [|S;|/2]-th minimum integer), and M «+ {m; € S | i =
1,2,...,1}.

Step 3. By Find(M, [I/2]), compute the median m of the integers in M.

Step 4. Let S_ <« {seS|s<m}, Sy« {seS|s>m}.

Step 5. If |S_| > k, return the output of Find(S_, k). Otherwise (i.e., if |S_| < k),
return the output of Find(S,, k — |S_|).

Prove that this algorithm computes the k-th minimum number in O(n) time, along
the following procedures.

(a) Confirm that the output is correct.

(b) Show upper-bounds of |S_| and |S, | using n.

(¢) Let T'(n) denote the computational time of Find(S, k). Using this 7', estimate
the computational time of each step.

(d) Based on the above estimations, show a recurrence relation (inequality) for
T'(n), and prove T'(n) = O(n).

6. Let n be a positive integer. Given a sequence ay, as, . .., a, of n integers, we want to
find a consecutive subsequence whose sum is maximum. If you check all patterns of
the starts and ends of consecutive subsequences, the combination is (";1) = Q(n?),
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and hence it takes Q(n?) time. Based on the following divide-and-conquer idea,
construct an algorithm (show concrete procedures) that returns a maximum-sum
consecutive subsequence in O(nlogn) time, and prove the correctness.

Divide Partition the given sequence into two consecutive subsequences at the cen-
ter (or near the center).

Conquer Find maximum-sum consecutive subsequences of the left and right con-
secutive subsequences separated above and one across the partitioning point,
and adopt one with the sum maximum among the three.



