
Algorithm Design, Assignment 2

Akiko Takeda (Problems are given by Yutaro Yamaguchi)

Due date: January 9, 2015

Choose two problems from the below and solve them. You must choose one from
1–4, and the other from 5–7. The notation O (f(x)) or Ω (f(x)) means that cf(x) is an
upper-bound or lower-bound, respectively, for some constant c.

1. Consider the situation when we pay an arbitrary positive-integer amount of money
by using only three kinds of coins whose values are 1, 5, 7. In this case, the greedy
algorithm that use as many coins as possible in decreasing order of the values
does not always return a payment with the fewest coins. Based on the dynamic
programming, construct an algorithm that finds a payment with the fewest coins
for any amount, and show the correctness and the computational time bound.

2. Let n be a positive integer. Given a sequence a1, a2, . . . , an of n integers, we want to
find a consecutive subsequence whose sum is maximum. In the previous assignment,
we construct an O(n log n)-time algorithm for this problem based on a divide-and-
conquer idea, whereas it takes Ω(n2) time to check all patterns of the starts and ends
of consecutive subsequences. In this assignment, construct an O(n)-time algorithm
based on the dynamic programming, and show the correctness.

3. Let n be a positive integer, and so a1, a2, . . . , an. For each i = 1, 2, . . . , n, there
is a box Mi containing ai coins. Consider the following two-player game between
Players A and B.

(i) Players alternately do the following procedure (ii), and the player who cannot
do it loses. The first move is done by Player A.

(ii) The player chooses a box Mi (1 ≤ i ≤ n) containing at least one coin, and
remove an arbitrary amount of coins, but at least one, from Mi.

For an arbitrary input (n; a1, a2, . . . , an), either Player A or B can win at this game
absolutely. Based on the dynamic programming, construct an algorithm to test
which player can win at the game for such an input, and show the correctness and
the computational time bound.

4. For a directed acyclic graph (i.e., it contains no directed cycle) with nonnegative
length on each arc, we want to find a longest path from the start s to the end t.
Solve the following problems.

(a) Show that any directed acyclic graph contains a vertex with no entering arc.

(b) Using an idea to remove a vertex with no entering arc repeatedly, based on
the dynamic programming, construct an algorithm for this problem.

(c) Show the correctness and the computational time bound of your algorithm.

1



5. Ford–Fulkerson algorithm (choose an arbitrary augmenting path in a residual net-
work, and increase the flow along the path) for finding a maximum flow does not
always halt when there exists an arc with an irrational capacity. Show such an
example using the network figured below, along the following procedures. In the
figure, the number and script by each arc represents its capacity, and let α be a
real with 1/2 < α < 1.

(a) Choose P1 = (s, v3, v2, t), P2 = (s, v1, v2, v3, v4, t), P3 = (s, v3, v2, v1, t), P2,
P4 = (s, v4, v3, v2, t) as augmenting paths and update the flow in this order.
Compute the residual capacity (obtained by subtracting the flow value from
the capacity) on each arc v1v2, v3v2, v3v4 just after each update.

(b) Show that there exists an irrational α such that we can update the flow in-
finitely repeatedly along the augmenting paths P2, P3, P2, P4 after (a).

α

1

1

5

5

5

5

5

5

s t

v1

v2

v3

v4

6. Suppose that you choose a shortest augmenting path (i.e., with the fewest arcs) in
each iteration step of Ford–Fulkerson algorithm. Solve the following problems.

(a) For a nonnegative integer k and a vertex v, let dk(v) denote the length of a
shortest directed path from the source s to v in the residual network (if there is
no such path, then define it as #(vertices)+1) just after the k-th flow update.
Show that dk(v) ≤ dk+1(v) for any vertex v.

(b) Just after updating the flow, at least one arc in the selected augmenting path
is removed in the residual network. For integers i, j with 0 < i < j, suppose
that an arc uv which was removed just after the i-th flow update appears in
the residual network again for the first time just after the j-th flow update.
Show di−1(u) < dj−1(u).

(c) Estimate the number of iterations (i.e., of flow updates) in this situation.

7. Regarding Menger’s theorem, “for any distinct vertices s, t in any directed graph,
the maximum number of arc-disjoint directed paths from s to t is equal to the
minimum number of arcs which are removed to make the graph containing no
directed path from s to t,” solve the following problems. You can use this theorem.

(a) Show the undirected graph version, “for any distinct vertices s, t in any undi-
rected graph, the maximum number of edge-disjoint undirected paths from s

2



to t is equal to the minimum number of edges which are removed to make the
graph containing no undirected path from s to t.”

(b) Show the vertex-disjoint version, “for any distinct vertices s, t in any directed
graph, the maximum number of vertex-disjoint directed paths from s to t is
equal to the minimum number of vertices except for s and t which are removed
to make the graph containing no directed path from s to t.” Here, the term
“vertex-disjoint” means that each two paths do not share any vertex in between
(i.e., except for s and t).

3


