
Successive Convex Relaxation Methods for

Nonconvex Quadratic Optimization Problems

Akiko TAKEDA

Submitted in partial fulfillments of

the requirement for the degree of

DOCTOR OF SCIENCE

Department of Mathematical and Computing Sciences

Tokyo Institute of Technology

March 2001

Acknowledgment

I would like to express my profound gratitude to my adviser Professor Masakazu Kojima for

introducing me to the successive convex relaxation method, explaining its theoretical frame-

work and guiding me through the project. Many discussions with him always stimulated

further research and finally, led me to the completion of the thesis.

I also would like to thank my co-adviser Professor Yang Dai for her generous guidance.

She helped me to write up my first paper on the practical successive convex relaxation

method. Our collaboration greatly influenced my mathematical writing style.

I would like to thank all other collaborators. Dr. Katsuki Fujisawa assisted me in parallel

implementation of successive convex relaxation methods. Mr. Yusuke Fukaya gave me some

idea on our relaxation models suitable for parallel computing. Also, Mr. Mituhiro Fukuda

cooperated with me to implement the first version of successive convex relaxation methods.

I have had plenty of intriguing discussions with them.

Professor Satoshi Matsuoka and the members of his laboratory offered me to use their

advanced PC cluster for my research. Thanks to their kind cooperation, I could develop

parallel successive convex relaxation algorithms on their parallel computing system.

I am also deeply indebted to Professor Hisakazu Nishino and Professor Yasushi Masuda

of Keio University. While I was in Keio University, I had enjoyed studying mathemat-

ical programming through the seminars with them. They had supported me with their

continuing encouragement since my graduation from Keio University.

I am grateful to Professor Sunyoung Kim of Ewha Women’s University, Korea. She

gave me valuable advice on my English conversation and writing, while she was visiting

Tokyo Institute of Technology. Her positive support cheered me up, when I had a hard time

devoting myself to this thesis.

Special thanks are due to all other members of Professor Kojima’s, Professor Takahashi’s

and Professor Miyoshi’s laboratories for their friendship and encouragements. I really had

a good time with them. I also would like to express my sincere thanks to technical admin-

istrators of the computer systems in the laboratories for their considerable work.

Finally, I would like to thank my parents and my sister for their continuing supports.

i

Contents

1 Introduction 1

2 Preliminaries on Successive Convex Relaxation Methods 7

2.1 Examples of Nonconvex Quadratic Optimization Programs 7

2.2 Two Prototypes of Successive Convex Relaxation Methods 11

2.3 Successive Convex Relaxation Models . 14

2.3.1 Conceptual Models . 16

2.3.2 Discretized-Localized Models . 17

2.4 Related Work to Successive Convex Relaxation Methods 19

2.4.1 The Lift-and-Project Procedure for 0-1 Integer Programs 19

2.4.2 The Reformulation-Linearization Technique for QOPs 23

3 Complexity Analysis for Conceptual Relaxation Methods 26

3.1 Accuracy Measures of Convex Relaxation . 27

3.2 A Spherical-SDP Model . 32

3.3 Rank-2 Models . 35

3.3.1 Convex Cones of Rank-2 Functions 36

3.3.2 Complexity Analysis . 39

3.4 Some Remarks . 44

4 Practical Algorithms and Their Implementations 47

4.1 Practical Successive Convex Relaxation Methods 47

4.1.1 Choices of δ-nets . 48

4.1.2 Algorithms . 50

4.1.3 Other Versions of the Algorithms . 51

ii

CONTENTS iii

4.2 Computational Experiments on QOPs . 52

4.2.1 Test Problems . 52

4.2.2 Numerical Results . 53

5 An Application of Successive Convex Relaxation Methods to Bilevel Quadratic

Optimization Problems 61

5.1 Transformation into a QOP Formulation . 63

5.2 Special Techniques for BQOPs . 65

5.2.1 Scaling Lagrange Multipliers . 65

5.2.2 Tightening Upper Bounds for Each Complementary Pair of Variables 67

5.2.3 An Illustrating Example . 68

5.3 Computational Experiments on BQOPs . 69

5.3.1 Some Implementation Details . 69

5.3.2 Numerical Results . 70

6 Parallel Implementations of Successive Convex Relaxation Methods 75

6.1 Properties of Previous SCRMs . 76

6.2 Parallel Successive Convex Relaxation Methods 79

6.2.1 An Effective Technique for Reducing Inequalities 79

6.2.2 A Parallel Algorithm . 82

6.3 Computational Experiments . 85

6.3.1 Test Problems . 85

6.3.2 Numerical Results . 87

7 Conclusions and Future Research 93

Bibliography 94

Chapter 1

Introduction

Quadratic optimization constitutes one of the most important areas of nonlinear program-

ming. The importance of quadratic optimization models is due to several reasons:

(a) Quadratic functions are the simplest nonlinear smooth functions whose derivatives are

readily available and easy to manipulate.

(b) Any twice differentiable function can be approximated by a quadratic function in a

neighborhood of a given point, so in a sense quadratic models are very natural.

(c) Numerous applications in economics, engineering, and other fields lead to quadratic

nonconvex optimization problems. Recent engineering applications include a product

design problem from the semiconductor industry [7] and scheduling bottleneck oper-

ations [28]. Quadratic constraints often appear in facility location problems [8, 29].

Also, the sensitivity analysis on the efficiency evaluation with Data Envelopment Anal-

ysis (DEA) utilizes quadratic optimization models [66].

In addition to these direct applications, quadratic optimization problems (abbreviated

by QOPs) cover various important nonconvex mathematical programs such as linear and

quadratic 0-1 integer programs [45], linear complementarity problems [11], bilinear matrix

inequalities [24, 38], bilevel linear and quadratic programs [70], sum of linear fractional pro-

grams [16, 51], and many other programming problems. For instance, a 0-1 constraint of

the form x ∈ {0, 1} can be written as the quadratic constraint x(x−1) = 0. See Section 2.1

for more detailed transformations from the above-mentioned problems into QOPs.

It is clear that QOPs have great importance both from mathematical and application

viewpoints. Thus, QOPs have attracted many researchers since the 1970s, and a large

number of approaches have been proposed especially for a linearly constrained QOP. See

the references [18, 27, 67, etc.] for those various approaches. The problem consists of a

quadratic objective function and a set of linear inequality constraints, as shown below:

max f(x) = γ + 2qT x + xT Qx

subject to Ax ≤ b.

}
(1.1)

1

CHAPTER 1. INTRODUCTION 2

Here γ ∈ R, q ∈ Rn, b ∈ Rm, A ∈ Rm×n and Q is an n×n symmetric matrix. According to

the nature of the quadratic matrix Q, (1.1) can be classified as convex quadratic problems,

bilinear problems, concave quadratic problems, indefinite quadratic problems, etc. For each

individual class of (1.1), global optimization algorithms have been developed. When Q is

not positive semidefinite, (1.1) becomes a nonconvex problem, known as a tough problem

to solve. Pardalos and Vavasis [43] showed that even the simplest QOP whose matrix Q

has just one negative eigenvalue:

min{−x2
1 + cT x : Ax ≤ b, x ≥ 0}

is an NP-hard problem. Nevertheless, quite practical algorithms exist which can solve the

above problem in a time usually no longer than the time needed for solving a few linear

programs (abbreviated by LPs) of the same size (see, e.g., Konno, Thach and Tuy [34]).

More additional quadratic constraints to (1.1) complicate the problem significantly.

In this thesis, we consider the most general class of QOPs formulated as follows:

max cT x subject to x ∈ F, (1.2)

where

c = a constant column vector in the n-dimensional Euclidean space Rn,

F = {x ∈ Rn : p(x) ≤ 0 (∀p(·) ∈ PF)},

PF : a set of finitely or infinitely many quadratic functions on Rn.

When a given QOP has a quadratic objective function such as γ0 + 2qT
0 x + xT Q0x, we can

transform the QOP into the form (1.2) by replacing the quadratic objective function by a

new variable t and adding γ0 +2qT
0 x+xT Q0x = t to the set of constraints. Therefore, (1.2)

is the general form of QOPs. Throughout this thesis, we assume that (i) F is a compact set,

and (ii) a compact convex set C0 including F is known. Then F of (1.2) can be expressed

as

F = {x ∈ C0 : p(x) ≤ 0 (∀p(·) ∈ PF)}. (1.3)

Problem (1.2) has received far less attention than (1.1). One of the reasons is theoretical

and practical difficulties in the process of solving such a general problem. Even finding a

feasible solution in F can be a difficult task. However, as we have shown at the beginning of

this section, a general QOP contains various practical applications and covers all the other

categories of quadratic problems as special instances. It is therefore well worth dealing with

the most general class of QOPs. In this thesis, focusing on the general QOP (1.2), we

develop implementable algorithms from the theoretical framework established by Kojima

and Tunçel [32, 33].

As practical solution methods proposed for QOPs (1.2) with little additional special

structure, branch-and-bound methods are indispensable. A branch-and-bound algorithm

consists of two fundamental operations; bounding and branching. Various bounding tech-

niques for QOPs (1.2) are investigated intensively, since tight upper bounds for (1.2) can

CHAPTER 1. INTRODUCTION 3

enhance the fathoming efficiency in the branch-and-bound algorithm. One bounding tech-

nique was proposed by Al-Khayyal and Falk [4] for some type of QOPs (1.2), bilinear prob-

lems. Their technique utilizes the convex envelope of each bilinear term to generate bound-

ing problems. Such bounding problems were significantly improved by a Reformulation-

Linearization Technique (RLT) [55] which Sherali and Alameddine designed. The RLT was

further extended to the class of continuous polynomial programs [56], quadratic mixed in-

teger programs [54] and linearly constrained quadratic programs [54]. A branch-and-bound

algorithm with such a bounding procedure provides increasingly better approximations as

the divided feasible regions become smaller. When all divided regions are sufficiently small,

the algorithm will generate a point within any desired tolerance of the optimum solution.

Recently, Kojima and Tunçel [32] proposed quite unconventional outer-approximation

procedures; successive convex relaxation methods (abbreviated by SCRMs) for solving

QOP (1.2), and established a theoretical basis for their methods. We might regard SCRMs

as extensions of the lift-and-project procedure, which was proposed independently by Lovász

and Schrijver [35] and Sherali and Adams [53] for 0-1 integer programs, to general QOPs.

Theoretically, starting from an initially known compact convex set C0 containing F ,

SCRMs successively construct tighter convex relaxations Ck (k = 1, 2, ...,) of F by repeating

the lift-and-project procedure with the use of semidefinite programming (abbreviated by

SDP) or semi-infinite LP (abbreviated by SILP) relaxation. See [3, 9, 19, 23, 39, 45, 59,

72] for the SDP relaxation and [55, 57] for the semi-infinite LP relaxation. Therefore,

maximizing the linear objective function over a convex relaxation Ck (k = 0, 1, 2, . . .) of F ,

we successively obtain improved upper bounds {ζk (k = 0, 1, 2, . . . ,)} for the maximum

objective function value ζ∗. While these relaxation methods enjoy global convergence such

that ζk → ζ∗ as k → ∞, they involve an infinite number of semi-infinite SDPs (or semi-

infinite LPs) to generate a new convex relaxation Ck of F . To resolve this difficulty, Kojima

and Tunçel proposed discretized-localized SCRMs [33] by bringing two new techniques,

“discretization” and “localization”, into the theoretical framework of previous SCRMs [32].

The “discretization” makes it possible to approximate an infinite number of semi-infinite

SDPs (or semi-infinite LPs), which need to be solved at each iteration of the previous

SCRMs, by a finite number of standard SDPs (or standard LPs, respectively) with a finite

number of inequalities. The “localization” allows one to generate a convex relaxation of F

which has a better approximation around a neighborhood of the objective direction c. The

motivations behind are (1) a better convex relaxation of F in that direction may contribute

more in finding a better upper bound for the maximum objective function value, and (2) it

eliminates some redundant work to make a convex relaxation of F accurate in unnecessary

directions. The paper [33] concluded that for any given small precision ε > 0, the discretized-

localized SCRMs generate ε-approximate upper bounds ζk, which satisfy ζ∗ ≤ ζk < ζ∗+ε for

the maximum objective function value ζ∗, within a finite number k of iterations. However,

they are still impractical because as a higher accuracy ε is required, not only the number of

the SDPs (or LPs) to be solved at each iteration but also their sizes explode quite rapidly.

Above all, the details of discretization and localization have not been studied, and the effect

of specifically chosen discretization and localization procedures on the efficiency of SCRMs

CHAPTER 1. INTRODUCTION 4

has not been clarified.

This thesis investigates SCRMs in further detail by highlighting the following issues (i)-

(iv) with the aim of deriving “better” bounding procedures than existing techniques. Here

a “better” procedure means that it attains a more accurate upper bound for QOP (1.2)

with less computational time.

(i) Some remaining concerns of the discretization-localization procedures, which lead to

practical SCRMs.

(ii) Special SCRMs to bilevel programs.

(iii) Suitable SCRMs to parallel computing.

(iv) Computational complexity analysis in conceptual SCRMs.

We will discuss the issue (i) in Chapter 4, (ii) in Chapter 5, (iii) in Chapter 6, and (iv) in

Chapter 3.

Figure 1.1 depicts the structure of the thesis. There are five chapters sandwiched be-

tween the introduction and the conclusion. In Chapter 2, after introducing some numerous

applications and mathematical programs which can be formulated as QOP (1.2), we explain

the concepts of original SCRMs proposed by Kojima and Tunçel [32, 33]. We also review

some theoretical results on their methods, paying attention to properties of global conver-

gence, and present one interesting theorem (Theorem 7.6 of [33]) which relates their SCRMs

to three types of lift-and-project procedures. In Chapter 2, we also write some notation and

definitions utilized throughout this thesis.

Chapter 3 investigates computational complexity of conceptual SCRMs, proposed in the

paper [32]. An example given in Section 7 of [32] shows that the convergence of upper

bounds {ζk (k = 0, 1, 2, . . . ,)} to the maximum objective function value ζ∗ is slower than

linear in the worst case. In this chapter, we bound the number of iterations k, which

the conceptual SCRMs require to generate an approximation of c.hull(F) with a given

“accuracy.” We extract some quantity and quality from the input data of QOP (1.2), such

as a nonconvexity measure and a nonlinearity measure from the set PF , the diameter of C0,

the diameter of F , and so on. These quantities directly affect the upper bounds that we will

derive for the number k of iterations. The upper bound itself might not be so significant,

and might be improved by a more sophisticated analysis. It should be emphasized, however,

that the upper bound is a polynomial in these quantities, and that this study provides a

new way to analyze the computational complexity for other SCRMs.

The discussions beginning in Chapter 4 are based on some remaining issues of the

discretized-localized SCRMs [33]. While the research on the SCRM so far was mainly

devoted to its theoretical aspect, its practical aspect has not been explored so much. In-

deed, global convergence of the discretized-localized SCRMs was already proved in [33], but

it is still unknown how to take several parameters necessary to practical implementation

CHAPTER 1. INTRODUCTION 5

Chapter 2 (existing methods)� �
Kojima-Tunçel [32]
Conceptual SCRMs

Kojima-Tunçel [33]
Discretized-Localized SCRMs� �

=⇒
Analyzed

Chapter 3� �
Kojima-Takeda [31]
Complexity Analysis

� �

⇓ Implemented

Chapter 4� �
Takeda-Dai-Fukuda-Kojima [62]
Practical SCRMs� �

=⇒
Specialized

Chapter 5� �
Takeda-Kojima [64]
Special SCRMs to
Bilevel Programs

� �
⇓ Paralleled

Chapter 6� �
Takeda-Fujisawa-Fukaya-Kojima [63]
Parallel SCRMs� �

Figure 1.1: Plan of the thesis

of the methods. In Chapter 4, we discuss such practical issues of the discretized-localized

SCRMs, and construct practical SCRMs by further slimming down the original discretized-

localized SCRMs to overcome the rapid explosion in the sizes of SDPs (or LPs) and in the

the number of SDPs (or LPs) to be solved at each iteration. Although these methods have

no guarantee to generate ε-approximate upper bounds ζk (k = 0, 1, 2, . . .) for a prescribed

accuracy ε > 0, numerical results look promising.

In Chapter 5, we focus on bilevel quadratic optimization problems (BQOPs) and propose

two techniques to transform them into particular cases of QOP (1.2) via the Karush-Kuhn-

Tucker (KKT) optimality condition. Moreover, we modify the practical SCRMs proposed

in Chapter 4, taking full advantage of a special structure of the transformed QOP (1.2),

i.e., complementarity constraints induced from the KKT optimality condition on the lower

level problem of a BQOP. An exploitation of the special structure accelerates the SCRMs

and generates tighter upper bounds for the maximum objective function value.

As we will show later in Chapter 2, SCRMs solve a large number of SDPs or LPs at

every iteration to constitute relaxed convex regions Ck (k = 1, 2, . . .) of the feasible region F

of QOP (1.2). In Chapter 6, we propose parallel versions of the practical SCRMs proposed

CHAPTER 1. INTRODUCTION 6

in Chapter 4, which process some SDPs or LPs at the same time using multiple processors.

Also, the SCRMs adopt some technique which decreases the number of constraints included

in each SDP or LP considerably, and make it possible to deal with larger dimensional QOPs.

We focus our attention on the parallel SCRM with successive SDP relaxations, which obtains

accurate upper bounds for QOPs. We discuss parallel execution of an SDP solver called

SDPA [20] on a Ninf (network based information library for high performance computing)

system. Ninf [50, 52] provides a global network-wide computing infrastructure developed

for high-performance numerical computation services.

Finally, Chapter 7 summarizes the results of this thesis, and mentions some future

directions of this work.

Chapter 2

Preliminaries on Successive Convex
Relaxation Methods

We begin with several examples of QOP (1.2) in this chapter. Though these examples are

nonconvex mathematical programs different from QOP (1.2), they can be transformed into

(1.2). Thus, Section 2.1 indicates that QOP (1.2) has great importance because of its wide

variety of applications. In Sections 2.2 and 2.3, we review previous results on some solution

methods of QOP (1.2), known as successive convex relaxation methods (SCRMs) [32, 33].

The properties of these methods are referred in the succeeding chapters, and definitions and

notation introduced there are used throughout this thesis. And in Section 2.4, we introduce

related work to SCRMs; three types of lift-and-project procedures [9, 35, 53].

2.1 Examples of Nonconvex Quadratic Optimization

Programs

A set of test problems for our numerical experiments reported in Chapters 4, 5 and 6 consists

of six types of problems.

(a) Minimization of a linear function over linear and quadratic constraints (Chapter 4).

(b) Minimization of a quadratic function with linear constraints (Chapters 4 and 6).

(c) Bilinear programs (Chapter 4).

(d) Mixed quadratic 0-1 integer programs (Chapters 4 and 6).

(e) Sum of linear or quadratic fractional programs (Chapters 4 and 6).

(f) Bilevel quadratic programs (Chapters 4, 5 and 6).

7

CHAPTER 2. PRELIMINARIES ON SCRMS 8

Some problems are from literature, some are randomly generated by publicly available

softwares. The sources of test problems or the references of public softwares are specified in

the sections of numerical experiments in Chapters 4, 5 and 6. In these chapters, we transform

the above problems into QOP (1.2) and apply our solution techniques to the transformed

problems. Since the transformation from problems (a)-(c) to QOP (1.2) is straightforward,

we only consider the remaining three examples, Examples 2.1.1, 2.1.2 and 2.1.3.

Example 2.1.4 presents a transformation technique from a general nonlinear program to

QOP (1.2), according to the paper [30]. We see from this example that QOP (1.2) covers a

wide class of mathematical programs. It is, however, difficult to give an explicit expression

for such transformation, so that SCRMs can hardly deal with such a nonlinear program in

a general way.

The last two examples show interesting applications of QOP (1.2) in the field where

nonconvex quadratic optimization models are unfamiliar; Data Envelopment Analysis (Ex-

ample 2.1.5) and the root finding problem for a polynomial equation system (Example 2.1.6).

The paper [66] proposed the quadratic formulation (2.5) of Example 2.1.5 and applied an-

other global optimization technique fully utilizing the structure of (2.5). Example 2.1.6

describes a combinatorial problem induced from the root finding problem, based on the

paper [65]. We will show a quadratic formulation for the combinatorial problem in Exam-

ple 2.1.6.

Example 2.1.1. A general form for mixed quadratic integer programs is

max γ + 2qT x + xT Qx

subject to Ax + b ≤ 0,

xi ∈ {0, 1} for i ∈ Ñ ,

where x ∈ Rn, γ ∈ R, q ∈ Rn, b ∈ Rm, A ∈ Rm×n and Q is an n × n symmetric matrix.

Let Ñ be a subset of {1, 2, . . . , n}. Using a new variable xn+1 for the objective function and

replacing 0-1 integer constraints by quadratic constraints, we rewrite the above problem as

max xn+1

subject to γ + 2qT x + xT Qx− xn+1 = 0,
Ax + b ≤ 0,

xi(xi − 1) = 0 for i ∈ Ñ .





(2.1)

Thus, mixed quadratic integer programs can be easily transformed into QOP (1.2).

Example 2.1.2. Consider a sum of quadratic fractional programming problem with the

following form

max
k∑

`=1

a0` + a`
T x + xT Q`x

b0` + b`
T x

subject to Ax + b ≤ 0,

CHAPTER 2. PRELIMINARIES ON SCRMS 9

where k is some positive integer, Q` (` = 1, 2, . . . , k) are n × n matrices, a`, b` (` =

1, 2, . . . , k) are n-dimensional vectors, and a0`, b0` (` = 1, 2, . . . , k) are real values. We

assume that b0` + b`
T x > 0 (` = 1, 2, . . . , k) for any feasible x. By introducing a new

variable xn+` (` = 1, 2, . . . , k) for each fractional term, we can replace the problem with the

following equivalent one.

max
k∑

`=1

xn+`

subject to a0` + a`
T x + xT Q`x− b0`xn+` − (bT

` x)xn+` = 0, ` = 1, 2, . . . , k
Ax + b ≤ 0.





(2.2)

Example 2.1.3. A bilevel quadratic programming problem can be formulated as

min
x

F (x,y)

subject to y ∈





min
y

f(x,y)

subject to A1x +B1y ≤ b1



 ,

A2x +B2y ≤ b2.

Here F (x,y) is a quadratic function of x and y, and f(x,y) is a convex quadratic function

of y when x is fixed. Then, the Karush-Kuhn-Tucker optimality condition on the inner

problem is both necessary and sufficient for the inner optimality, and reduces the above

problem to the following one.

max
x,y,u

−F (x,y)

subject to A1x +B1y ≤ b1,
∇yf(x,y) +BT

1 u = 0,
ui(A1x +B1y − b1)i = 0, u ≥ 0,
A2x +B2y ≤ b2.





(2.3)

The resultant problem involves linear and bilinear constraints, and it can be considered as

QOP (1.2) after an appropriate transformation.

Example 2.1.4. Kojima, Matsumoto and Shida [30] pointed out that a wide class of non-

linear programs can be reduced to a nonconvex quadratic program of QOP (1.2). More

generally, it is known that any closed subset G ⊂ Rn can be represented as

G = {x ∈ Rn : g(x)− ‖x‖2 ≤ 0}

using some convex function g(·) : Rn → R. See, for example, Corollary 3.5 of [67]. Thus,

given any closed subset G of Rn and any compact convex subset C0 of Rn, we can rewrite

maximization of a linear function cT x over a compact set G ∩ C0 as

max cT x subject to (x, t) ∈ F̃ ,

CHAPTER 2. PRELIMINARIES ON SCRMS 10

where
F̃ = {(x, t) ∈ C̃0 : t− xT x ≤ 0},

C̃0 = {(x, t) ∈ Rn+1 : g(x)− t ≤ 0, 0 ≤ t ≤ t̄, x ∈ C0},
g(·) : a convex function on Rn.

Then, C̃0 turns out to be compact and convex, and the resultant problem is a special case of

the general nonconvex QOP (1.2). Although this construction is not implementable because

an explicit algebraic representation of such a convex function g(·) is usually impossible, it

certainly shows theoretical potential of the SCRMs for quite general nonlinear programs.

Example 2.1.5. Takeda and Nishino [66] gave some nonconvex programming formulation

for the sensitivity analysis of the efficiency evaluation with Data Envelopment Analysis

(DEA), and presented the transformation from the formulation to QOP (1.2).

DEA is a useful method to evaluate relative efficiency of multi-input and multi-output

units based on observed data. Suppose that we have r DMUs (Decision Making Units);

DMU1, . . . , DMUr with input-output vectors zT
i ∈ Rn (i = 1, . . . , r). The reference set

denotes a polyhedral set P0 such as

P0 =
{
z ∈ Rn : z = Dµ, µ ≥ 0, µ ∈ R(r+n)

}
.

The matrix D ∈ Rn×(r+n) is induced from all input-output vectors zi ∈ Rn (i = 1, . . . , r),

and unit coordinate vectors ei ∈ Rn (i = 1, . . . , n).

Here we suppose that DMU0 (0 ∈ {1, · · · , r}) is evaluated as inefficient DMU by the

conventional CCR model of DEA. Takeda and Nishino [66] proposed a new technique to

assess the sensitivity for the inefficiency classification of DMU0. Their sensitivity technique

formulates the nonconvex quadratic program;

min f(z) = (z − z0)
T Q(z − z0)

subject to z ∈ Rn \ P0,

}
(2.4)

where Q is a positive definite matrix, X denotes the closure of a set X and Rn \ P denotes

the complement of a convex set P . The inefficiency of DMU0 ensures that z0 exists in the

interior of the region P0. Using the optimum solution z∗ of (2.4), we compute
√
f(z∗) for

the sensitivity measure of DMU0. As the value of
√
f(z∗) becomes larger, we treat the

inefficiency evaluation of z0 more stable.

Theorem 3.2 of [66] showed that the program (2.4) is equivalent to the following non-

convex quadratic program:

min g(x) = −zT
0 x

subject to DT x ≤ 0, xT Q−1x ≥ 1,
x ∈ Rn.





(2.5)

We briefly summarize the correspondence between two problems;

(optimum value)
√
f(z∗) = g(x∗),

(optimum solution) z∗ = z0 + g(x∗)Q−1x∗,

CHAPTER 2. PRELIMINARIES ON SCRMS 11

using two optimum solutions; z∗ of (2.4) and x∗ of (2.5). Note that (2.5) is formulated as

QOP (1.2).

Example 2.1.6. Takeda, Kojima and Fujisawa [65] presented an interesting combinatorial

(enumeration) problem, which arises in the initial phase of the polyhedral homotopy con-

tinuation method for computing all solutions of a polynomial equation system in complex

variables. We show below that QOP (1.2) also covers such a combinatorial problem.

Let f (x) = (f1(x), f2(x), . . . , fn(x)) = 0 be a system of n polynomial equations in n

complex unknowns xi ∈ C (i = 1, 2, . . . , n), where x = (x1, x2, . . . , xn) ∈ Cn. Each polyno-

mial fi(x) consists of mi terms (including a constant term). We denote each monomial as

xa = xa(1)

1 xa(2)

2 . . . xa(n)

n , and identify it with a lattice point a = (a(1), a(2), . . . , a(n)) ∈ Zn
+ ≡

{0, 1, 2, . . .}n. Denoting each term of the ith equation as cij xaij (j = 1, 2, . . . , mi) with a

coefficient cij ∈ C and aij ∈ Zn
+, and letting ωij be a real number chosen generically, we

present the combinatorial problem of [65]:

Find a solution (α,β) = (α1, α2, . . . , αn, β1, β2, . . . , βn) ∈ R2n which satisfies

βi − aT
ijα ≤ ωij (i = 1, 2, . . . , n, j = 1, 2, . . . , mi), (2.6)

with 2 equalities for each i ∈ {1, 2, . . . , n}.

This problem can be formulated as the following mathematical program with additional

variables s = (sij : i = 1, . . . , n, j = 1, . . . , mi) and x = (xij : i = 1, . . . , n, j = 1, . . . , mi):

max dT
1 α + dT

2 β + dT
3 s + dT

4 x

subject to βi − aT
ijα + sij = ωij (i = 1, 2, . . . , n, j = 1, 2, . . . , mi),

0 ≤ sij ≤M(1 − xij), xij ∈ {0, 1} (i = 1, 2, . . . , n, j = 1, 2, . . . , mi),∑mi

j=1 xij = 2 (i = 1, 2, . . . , n),





(2.7)

where M ∈ R is a sufficiently large number. Also, d1 ∈ Rn, d2 ∈ Rn, d3 ∈ R
∑n

i=1
mi and

d4 ∈ R
∑n

i=1
mi are arbitrary vectors. Example 2.1.1 ensures that a 0-1 integer constraint

xij ∈ {0, 1} of the problem (2.7) can be expressed by a quadratic constraint, and hence,

the combinatorial problem arising in the polyhedral homotopy continuation method can be

formulated as QOP (1.2).

2.2 Two Prototypes of Successive Convex Relaxation

Methods

At first, we introduce some notation and conditions necessary to describe basic algorithms

of SCRMs. Let Sn and Sn
+ denote the set of n× n symmetric matrices and the set of n× n

symmetric positive semidefinite matrices, respectively. Also, for two matrices ∀A ∈ Sn

CHAPTER 2. PRELIMINARIES ON SCRMS 12

and ∀B ∈ Sn, we define a matrix operation such that A • B ≡ the inner product of two

symmetric matrices A and B, i.e., A •B ≡
∑n

i=1

∑n
j=1AijBij .

We often use the notation qf(·; γ, q,Q) to designate the constant term γ, the linear term

2qT x and the quadratic term xT Qx involved in a quadratic function p(·) defined on Rn;

p(x) = qf(x; γ, q,Q) ≡ γ + 2qT x + xT Qx (∀x ∈ Rn),

where γ ∈ R, q ∈ Rn and Q ∈ Sn. With this convention, we can write the set Q of

quadratic functions on Rn, the set Q+ of convex quadratic functions on Rn and the set L

of linear functions on Rn as

Q ≡ {qf(·; γ, q,Q) : γ ∈ R, q ∈ Rn, Q ∈ Sn},

Q+ ≡ {qf(·; γ, q,Q) : γ ∈ R, q ∈ Rn, Q ∈ Sn
+},

L ≡ {qf(·; γ, q,Q) : γ ∈ R, q ∈ Rn, Q = O},

respectively. Throughout the paper, we assume the following conditions on QOP (1.2).

Condition 2.2.1.

(i) F is compact.

(ii) A compact convex set C0 ⊆ Rn such that

F ⊆ C0,

η0 ≡ max{‖x′ − x‖ : x′, x ∈ C0} > 0

(the diameter of C0)

is known in advance.

(iii) ‖c‖ = 1.

Note that if η0 was zero in (ii) then F would consist of at most one point; hence QOP

(1.2) would be trivial. Also (iii) is not essential because we may assume it without loss of

generality whenever c 6= 0. In addition to Condition 2.2.1 above, we need to assume the

following condition to implement SCRMs on a computer.

Condition 2.2.2.

(iv) The quadratic inequality representation PF of F is finite.

(v) The compact convex set C0 containing F (see (ii) above) has a finite convex quadratic

(or linear) inequality representation P̃0:

F ⊆ C0 ≡ {x ∈ Rn : p(x) ≤ 0 (∀p(·) ∈ P̃0)}

for ∃ finite P̃0 ⊆ Q+ (or ∃ finite P̃0 ⊆ L) .

}
(2.8)

CHAPTER 2. PRELIMINARIES ON SCRMS 13

Let P be a nonempty subset of quadratic functions, i.e., ∅ 6= P ⊂ Q. (In the algorithms

below, we will take P to be the union of PF and Pk of quadratic functions which induce

quadratic valid inequalities for the kth iterate Ck). We use the notation F̂ (C0,P) for

the SDP (semidefinite programming) relaxation, and the notation F̂
L
(C0,P) for the semi-

infinite LP (linear programming) relaxation applied to the set {x ∈ C0 : qf(x; γ, q,Q) ≤

0, ∀qf(·; γ, q,Q) ∈ P};

F̂ (C0,P) ≡





x ∈ C0 :
∃X ∈ Sn such that

(
1 xT

x X

)
∈ S1+n

+ and

γ + 2qT x + Q •X ≤ 0 (∀qf(·; γ, q,Q) ∈ P)





≡ an SDP relaxation of
{x ∈ C0 : qf(x; γ, q,Q) ≤ 0 (∀qf(·; γ, q,Q) ∈ P)},

F̂
L
(C0,P) ≡

{
x ∈ C0 :

∃X ∈ Sn such that
γ + 2qT x + Q •X ≤ 0 (∀qf(·; γ, q,Q) ∈ P)

}

≡ a semi-infinite LP relaxation of
{x ∈ C0 : qf(x; γ, q,Q) ≤ 0 (∀qf(·γ, q,Q) ∈ P)}.





(2.9)

The lemma below provides a fundamental characterization of F̂ (C0,P) and F̂
L
(C0,P),

which plays an essential role in global convergence analysis of the SCRMs. Our complexity

analysis shown in Chapter 3 is based on the lemma. Here, let c.cone(P) denote the convex

cone generated by P ⊂ Q; c.cone(P) ≡ {
∑`

i=1 λipi(·) : λi ≥ 0, pi(·) ∈ P (i = 1, 2, . . . , `), ` ≥

0}.

Lemma 2.2.3. ([32]) Let ∅ 6= P ⊂ Q.

(i) F̂ (C0,P) = {x ∈ C0 : p(x) ≤ 0 (∀p(·) ∈ c.cone(P) ∩ Q+)}.

(ii) F̂
L
(C0,P) = {x ∈ C0 : p(x) ≤ 0 (∀p(·) ∈ c.cone(P) ∩ L)}.

Proof: See Theorem 2.4 and Corollary 2.5 of [32].

Kojima and Tunçel [32] presented two types of SCRMs for approximating the convex

hull of F (abbreviated by c.hull(F)) with the use of SDP or semi-infinite LP relaxation.

We will call the first method the SSDP (Successive Semidefinite Programming) Relaxation

Method, and the second the SSILP (Successive Semi-Infinite Linear Programming) Relax-

ation Method.

Algorithm 2.2.4. (SSDP relaxation method)

Step 0: Let k = 0.

Step 1: If Ck = ∅ then stop. Compute ζk = sup{cT x : x ∈ Ck}.

CHAPTER 2. PRELIMINARIES ON SCRMS 14

Step 2: Choose a set Pk ⊂ Q that induces quadratic valid inequalities for Ck.

Step 3: Let Ck+1 = F̂ (C0,PF ∪ Pk).

Step 4: Let k = k + 1 and go to Step 1.

Algorithm 2.2.5. (SSILP relaxation method)

Step 0: Let k = 0.

Step 1: If Ck = ∅ then stop. Compute ζk = sup{cT x : x ∈ Ck}.

Step 2: Choose a set Pk ⊂ Q that induces quadratic valid inequalities for Ck.

Step 3: Let Ck+1 = F̂
L
(C0,PF ∪ Pk).

Step 4: Let k = k + 1 and go to Step 1.

At each iteration of these methods, we first generate a set Pk = {p(·)} of finitely or

infinitely many quadratic functions such that each p(x) ≤ 0 forms a valid inequality for the

kth iterate Ck. Since Ck was chosen to include F at the previous iteration, each p(x) ≤ 0

serves as a (redundant) valid inequality for F ; hence F is represented as

F = {x ∈ C0 : p(x) ≤ 0 (∀p(·) ∈ PF ∪ Pk)}.

In order to generate the next iterate Ck+1, we then apply the SDP relaxation or the semi-

infinite LP relaxation to the set F with the above representation in terms of the set PF ∪Pk

of quadratic functions. (The semi-infinite LP relaxation is also called the Reformulation-

Linearization Technique (RLT) in the literature [55, 56, 57]). Apparently, the SDP re-

laxation is at least as accurate as the semi-infinite LP relaxation, i.e., F̂ (C0,PF ∪ Pk) ⊆

F̂
L
(C0,PF ∪ Pk).

To implement the above algorithms, we need to provide precise description for Pk ⊂ Q.

The difference among the existing SCRM models lies in the definition of Pk. The next

section shows several candidates for Pk, which the papers [32, 33] proposed and studied.

2.3 Successive Convex Relaxation Models

Throughout the paper, we mainly focus our attention on the following two models of SCRMs

with the use of the SDP relaxation or the use of the semi-infinite LP relaxation.

• Rank-2-SDP Model: We take Pk to be a set of rank-2 quadratic functions in Algo-

rithm 2.2.4, and we perform the SDP relaxation.

CHAPTER 2. PRELIMINARIES ON SCRMS 15

• Rank-2-SILP Model: We take Pk to be a set of rank-2 quadratic functions in Algo-

rithm 2.2.5, and we perform the semi-infinite LP relaxation.

Now, we introduce some notation and symbols to define the set Pk of functions. Let

D ≡ {d ∈ Rn : ‖d‖ = 1} (the set of unit vectors in Rn),
±I ≡ {e1, e2, . . . , en,−e1,−e2, . . . ,−en},
ei ≡ the ith unit coordinate vector (i = 1, 2, . . . , n).





(2.10)

Let C ′ ⊂ C and let C be a compact subset of Rn. For ∀d, ∀d1, ∀d2 ∈ D, ∀ξ ∈ Rn, ∀ρ > 0

and ∀x ∈ Rn, define

α(C,d) ≡ sup{dT x : x ∈ C},

s̀f(x;C,d) ≡ dT x− α(C,d),

r2sf(x;C,d1, C
′,d2) ≡ −(dT

1 x− α(C,d1))(d
T
2 x− α(C ′,d2)),

r1sf(x;C,d) ≡ r2sf(x;C,d, C,−d)

= −(dT x− α(C,d))(−dT x− α(C,−d)),

ρ(C, ξ) = sup{‖x− ξ‖ : x ∈ C},

sf(x; ξ, ρ) = (x− ξ)T (x− ξ)− ρ2.

The optimum value ρ(C, ξ) corresponds to the radius of the minimum ball with a center

ξ ∈ Rn that contains C ⊂ Rn. We call s̀f(·;C,d) a linear supporting function for C in a

direction d ∈ D, r2sf(·;C,d1, C
′,d2) a rank-2 (quadratic) supporting function for C ′ in a

pair of directions d1,d2 ∈ D, r1sf (·;C,d) a rank-1 (quadratic) supporting function for C in

a direction d ∈ D, and sf(x; ξ, ρ) a spherical function with a center ξ ∈ Rn and a radius

ρ > 0. Let

PL(C,D) ≡ { s̀f(·;C,d) : d ∈ D} (∀D ⊆ D),

P2(C,D1;C
′, D2) ≡ {r2sf(·;C,d1, C

′,d2) : d1 ∈ D1, d2 ∈ D2} (∀D1, D2 ⊆ D),

P1(C,D) ≡ {r1sf(·;C,d) : d ∈ D} (∀D ⊆ D),

PS(C) ≡ {sf(·; ξ, ρ) : ξ ∈ Rn, ρ ≥ ρ(C, ξ)}.

Note that the construction of PL(C,D) requires the optimum solutions of the following

programs:

α(C,d) = sup{dT x : x ∈ C} for ∀d ∈ D.

Moreover, to define P2(C,D1;C
′, D2), we need to solve

α(C,d1) = sup{dT
1 x : x ∈ C} for ∀d1 ∈ D1

and

α(C ′,d2) = sup{dT
2 x : x ∈ C ′} for ∀d2 ∈ D2.

In the following two subsections (Sections 2.3.1 and 2.3.2), we will show several different

definitions for the set Pk constructed in Step 2 of Algorithm 2.2.4 or 2.2.5.

CHAPTER 2. PRELIMINARIES ON SCRMS 16

2.3.1 Conceptual Models

According to the paper [32], we present the definitions of the set Pk for the conceptual

versions of Rank-2-SDP and Rank-2-SILP Models, and for one additional model (Spherical-

SDP Model).

• Spherical-SDP Model: Pk = PS(Ck) in Algorithm 2.2.4

• Rank-2-SDP Model: Pk = P2(C0, D1;Ck, D2)
† with D1 = ±I,D2 = D in Algo-

rithm 2.2.4

• Rank-2-SILP Model: Pk = P2(C0, D1;Ck, D2) with D1 = ±I,D2 = D in Algo-

rithm 2.2.5

The complexity analysis of the Spherical-SDP Model is much simpler than that of the latter

two models, and the former analysis helps an easier understanding of the latter two models,

which are of more practical interest.

Note that Pk = PS(Ck) of Spherical-SDP Model and Pk = P2(C0, D1;Ck, D2) of Rank-2

Models provide a quadratic inequality representation of Ck in Algorithm 2.2.4 or 2.2.5. For

above three models, we can derive the convergence of the sequence {Ck (k = 0, 1, 2, . . . ,)}

to the convex hull, c.hull(F), and the convergence of the sequence {ζk (k = 0, 1, 2, . . . ,)}

to the optimum value ζ∗ of QOP (1.2) as Theorem 2.3.1 shows below. However, we should

mention that these three models are conceptual, because

• Step 2 of Algorithms 2.2.4 and 2.2.5 requires to compute a continuum of scalars

ρ(Ck, ξ) = sup{‖x− ξ‖ : x ∈ Ck} (∀ξ ∈ Rn),

or a continuum of

α(Ck,d) = sup{dT x : x ∈ Ck} (∀d ∈ D)

for the construction of Pk, and moreover,

• the feasible region Ck of the above problems includes a continuum of inequalities;

γ + 2qT x + Q •X ≤ 0 (∀qf (·; γ, q,Q) ∈ Pk−1).

Thus, Algorithms 2.2.4 and 2.2.5 of the three models are called conceptual SCRMs. To

resolve these difficulties in implementing Rank-2-SDP and Rank-2-SILP Models on a com-

puter, we need to choose a finite number of vectors for D2. However, with an arbitrary

set D2 ⊆ D, Pk = P2(C0, D1;Ck, D2) of Rank-2 Models do not form quadratic inequality

†For simplicity of notation, we sometimes use P2(Ck, D1, D2) instead of P2(C0, D1; Ck, D2) in some
succeeding chapters.

CHAPTER 2. PRELIMINARIES ON SCRMS 17

representations of Ck, i.e., Ck can be a proper subset of {x ∈ Rn : p(x) ≤ 0 (∀p(·) ∈ Pk)}.

In Spherical-SDP Model, even if a vector ξ and a bounded set C are given, it is difficult to

compute ρ(C, ξ) in general.

Here, we summarize the properties of the conceptual SCRMs including Spherical-SDP,

Rank-2-SDP and Rank-2-SILP Models.

Theorem 2.3.1. ([32]) Suppose that Condition 2.2.1 holds. In conceptual SCRMs, {Ck (k =

0, 1, 2, . . . ,)} and {ζk (k = 0, 1, 2, . . . ,)} generated by Algorithm 2.2.4 (or Algorithm 2.2.5)

satisfy the following properties:

(a) c.hull(F) ⊆ Ck+1 ⊆ Ck and ζ∗ ≤ ζk+1 ≤ ζk (∀k = 0, 1, 2, . . . ,) (monotonicity),

(b) if F = ∅, then Ck = ∅ for some finite number k (detecting-infeasibility),

(c) if F 6= ∅, then
∞⋂

k=1

Ck = c.hull(F) and ζk → ζ∗ as k →∞ (asymptotic convergence).

Remark 2.3.2. Kojima and Tunçel [32] proved Theorem 2.3.1 for their conceptual Rank-

2 Models slightly different from the conceptual models of this section. Kojima-Tunçel’s

Rank-2 Models adopted Pk = P2(Ck, D1;Ck, D2) instead of Pk = P2(C0, D1;Ck, D2). Here,

note that P2(Ck, D1;Ck, D2) generates tighter relaxed region Ck+1 than P2(C0, D1;Ck, D2)

in Algorithms 2.2.4 and 2.2.5, but we can easily show Theorem 2.3.1 for the conceptual

SCRM models with Pk = P2(C0, D1;Ck, D2) using the proof of Theorem 2.3.1. See the

proof of Theorem 3.4 in [32]. The revised models with Pk = P2(C0, D1;Ck, D2) need less

computation than Kojima-Tunçel’s models in Algorithms 2.2.4 and 2.2.5, because at the kth

iteration with k > 0, the computation of α(Ck,d) for d ∈ D1 is avoidable and the number

of SDPs (or LPs) to be solved is reduced from |D1 ∪D2| to |D2|.

2.3.2 Discretized-Localized Models

To make Rank-2-SDP and Rank-2-SILP Models implementable, we need to take a finite

number of vectors for the direction set D2 ⊂ D. Kojima and Tunçel [33] defined a δ-net

of D, a finite discretization of D which uniformly approximates D, and employed it for

D2. Even with this compromise, we can maintain the monotonicity property (a) and the

detecting-infeasibility property (b). But we can not expect the asymptotic convergence

property (c) any more.

Let D ⊆ D. For some δ ≥ 0, a subset D′ of D is a δ-net of D if

for ∀d ∈ D, there exists a d′ ∈ D′ such that ‖d′ − d‖ ≤ δ.

By definition, if δ > δ′ ≥ 0 and D′ is a δ′-net of D, then D′ is a δ-net of D. Particularly, D

itself is a δ-net of D for any δ ≥ 0. It should be noted that we can take a finite δ-net D′ of

D whenever δ > 0. Thus a δ-net D′ of D with δ > 0 leads us to a finite discretization of D.

CHAPTER 2. PRELIMINARIES ON SCRMS 18

In addition to the above discretization technique, a localization technique was introduced

in [33]. The localization technique generates a sequence {Ck (k = 0, 1, 2, . . . ,)} of convex

relaxations of a feasible region F , which becomes accurate only in certain directions in

a neighborhood of the objective direction c, and cuts off redundant work to make the

convex relaxations accurate in unnecessary directions. If we are only interested in a good

approximate solution and a good bound for the optimum value of QOP (1.2) but not in

an approximation of the entire c.hull(F), the SCRMs with discretization and localization

techniques are sufficiently effective. Therefore, we define the subset D(c, κ) of D as

D(c, κ) ≡ {d ∈ D : ‖d− c‖ ≤ κ}

for given κ > 0, and consider a finite discretization δ-net of D(c, κ) with some δ > 0. Letting

D2 be a δ-net of D(c, κ), Kojima and Tunçel [33] proposed the following two models.

• Rank-2-SDP Model: Pk = PL(C0, D1) ∪ P
2(C0, D1;Ck, D2) with D1 = ±I,D2 = (a

δ-net of D(c, κ)) in Algorithm 2.2.4.

• Rank-2-SILP Model: Pk = PL(C0, D1) ∪ P
2(C0, D1;Ck, D2) with D1 = ±I,D2 = (a

δ-net of D(c, κ)) in Algorithm 2.2.5.

Algorithm 2.2.4 of Rank-2-SDP Model is called a discretized-localized SSDP (abbrevi-

ated by DLSSDP) relaxation method, and Algorithm 2.2.5 of Rank-2-SILP Model called a

discretized-localized SSILP (abbreviated by DLSSILP) relaxation method. Each discretized-

localized version generates a sequence {Ck (k = 0, 1, 2, . . . ,)} of convex subsets of C0

and a sequence {ζk (k = 0, 1, 2, . . . ,)} of real numbers. We note here that Ck can be a

proper subset of {x ∈ Rn : p(x) ≤ 0 (∀p(·) ∈ Pk)} unless D2 = D̄. Nevertheless, both

{Ck (k = 0, 1, 2, . . . ,)} and {ζk (k = 0, 1, 2, . . . ,)} converge globally as shown in the

following theorem.

Theorem 2.3.3. ([33]) Suppose that Condition 2.2.1 holds. Let κ > 0 and ε > 0. In

discretized-localized SCRMs, there exists a δ > 0 such that if we take a δ-net D2 of D(c, κ),

then {Ck (k = 0, 1, 2, . . .)} and {ζk (k = 0, 1, 2, . . .)} generated by Algorithm 2.2.4 (or

Algorithm 2.2.5) satisfy the above properties (a), (b) and the following property (c)’:

(c)’ if F 6= ∅, then ζ∗ ≤ ζk < ζ∗ + ε for some finite number k.

We call ζk satisfying ζk < ζ∗ + ε an ε-approximation of the maximum objective function

value of QOP (1.2). We should remark that Theorem 2.3.3 remains valid even when Con-

dition 2.2.2 is not satisfied, i.e., the quadratic representations PF and P̃0 are infinite. But

Condition 2.2.2, together with a δ-net, enables Ck to be defined by finitely many inequality

constraints. Namely, at the kth (k = 0, 1, 2, . . .) iteration of Algorithm DLSSDP (or Algo-

rithm DLSSILP), a finite number of SDPs (or LPs) with finitely many inequality constraints

are generated in order to construct a function set Pk. Therefore, Condition 2.2.2 and the

device of δ-net are unavoidable for implementable Algorithms 2.2.4 and 2.2.5.

CHAPTER 2. PRELIMINARIES ON SCRMS 19

Remark 2.3.4. The original versions [33] for the discretized-localized Rank-2 Models adopt

Pk = PL(Ck, D1)∪P
2(Ck, D1;Ck, D2). Theorem 2.3.3 was proved for those original models.

See the proof of Theorem 3.5 in [33]. However, from the proof, we find that the claim of

Theorem 2.3.3 holds even if we take Pk = PL(C0, D1) ∪ P
2(C0, D1;Ck, D2). When we

consider the computational tasks necessary for Algorithms 2.2.4 and 2.2.5, it is better to

use the revised discretized-localized Rank-2 Models.

Remark 2.3.5. In Rank-2-SDP Model, we can substitute P1(C0, D1) for PL(C0, D1) in

the definition of Pk, i.e., Pk = P1(C0, D1) ∪ P
2(C0, D1;Ck, D2). The set P1(C0, D1) of

convex quadratic functions makes the relaxation Ck+1 tighter than PL(C0, D1) does (see

Remark 3.8 of [33]), though P1(C0, D1) has half as many functions as PL(C0, D1) does.

Remark 2.3.6. The linear functions of PL(C0, D1) play an important role in the region

Ck+1. Whenever Pk includes the set PL(C0, D1), any feasible vector x of Ck+1 satisfies

s̀f(x;Ck,d) = dT x− α(Ck,d) ≤ 0 (∀d ∈ D2),

though these linear inequalities are not included in the set of constraints of Ck+1. Even in

DLSSDP model with Pk = P1(C0, D1)∪P
2(C0, D1;Ck, D2), the convex quadratic functions

of P1(C0, D1) induce the above linear constraints s̀f(x;Ck,d) ≤ 0 for ∀d ∈ D2.

2.4 Related Work to Successive Convex Relaxation

Methods

Lovász-Schrijver [35] and Sherali-Adams [53] independently developed the lift-and-project

procedure for 0-1 integer problems. We can regard the conceptual SCRMs as the extensions

of the lift-and-project procedure proposed for 0-1 integer programs, to QOP (1.2). Sherali-

Adams’ method, often called the Reformulation-Linearization Technique (RLT), can handle

not only 0-1 integer linear programs but also linearly constrained nonconvex quadratic

programs [57].

2.4.1 The Lift-and-Project Procedure for 0-1 Integer Programs

In this section, we compare these three types of lift-and-project procedures:

• L. Lovász and A. Schrijver [35]

• E. Balas, S. Ceria and G. Cornuéjols [9]

• H. Sherali and W. Adams [53]

CHAPTER 2. PRELIMINARIES ON SCRMS 20

and introduce the theorem shown by Kojima and Tunçel [33], which relates conceptual

SCRMs to the Lovász and Schrijver construction.

Here we consider a mixed 0-1 integer program:

max cT x subject to x ∈ F, (2.11)

where

F = {x ∈ C0 : xj ∈ {0, 1}, j = 1, . . . , p},

C0 ≡ {x ∈ Rn : Ax ≤ b, 0 ≤ xj ≤ 1, j = 1, . . . , p}

≡ {x ∈ Rn : Ãx ≤ b̃}.

F is the feasible set of a mixed integer programming problem with n variables, p of which

are 0-1 integer constrained. C0 is the standard LP relaxation. Let us combine bound-factors

and constraint-factors in a single set, as the last expression of C0 shows. Suppose that Ã

is an m × n matrix. We denote the ith constraint of Ãx ≤ b̃ by Ãix ≤ b̃i (i = 1, . . . , m).

In this section, we consider the procedures for finding the convex hull of F (denoted by

c.hull(F)).

The Lovász-Schrijver construction

One lift-and-project procedure was proposed by Lovász and Schrijver [35] for 0-1 integer

programs (2.11). The procedure consists of following two steps.

Lifting : Multiplying every inequality by every 0-1 integer variable and its complement

in turn, and then linearizing the resulting system of quadratic inequalities, we obtain

a linear-constraint system of higher dimensional variables.

Projecting : We project back the system onto the original space.

Repeating the lift-and-project steps p times (the number of original 0-1 variables) yields

the convex hull of the feasible region F , while each lifting step involves a squaring of the

number of variables and an even steeper increase in the number of constraints. The lift-

and-project procedure of the Lovász-Schrijver construction is as follows.

Step 1. Multiply Ãx ≤ b̃ with xi and 1− xi (i = 1, . . . , p) to obtain the set of nonlinear

quadratic functions

Q(C0) ≡

{
(1− xi)(Ãjx− b̃j), xi(Ãjx− b̃j)

i = 1, . . . , p, j = 1, . . . , m

}
. (2.12)

CHAPTER 2. PRELIMINARIES ON SCRMS 21

Step 2. Linearize (2.12) by substituting Xij for xixj , and setting Xij = Xji (i = 1, . . . , n,

j = 1, . . . , p). Also, set xj = Xjj (j = 1, . . . , p), since xj = x2
j holds for the both cases

of xj = 0 and xj = 1. Then, let M(C0) be the polyhedron consisting of such linearized

functions, i.e.,

M(C0) =

{(
1 xT

x X

)
∈ S1+n :

γ + 2qT x + Q •X ≤ 0 (∀qf(·; γ, q,Q) ∈ Q(C0))
Xjj = xj , (j = 1, . . . , p)

}
.

Step 3. Project M(C0) onto the x-space. Let N(C0) ⊂ Rn denote the projected polyhe-

dron i.e.,

N(C0) =





x ∈ Rn :

∃X ∈ Sn such that(
1 xT

x X

)
∈M(C0)




.

Let N0(C0) = C0 and let N t(C0) = N(N t−1(C0)) for t ≥ 1. Lovász-Schrijver has shown

that N(C0) and Np(C0) have the following properties:

Theorem 2.4.1. ([35]) N(C0) ⊆ c.hull (C0 ∩ {x ∈ Rn : xj ∈ {0, 1}}) for j = 1, . . . , p.

Theorem 2.4.2. ([35]) Np(C0) = c.hull(F).

Theorem 2.4.2 means that iterating the above procedure p times yields the integer hull. The

paper [35] also proposed a tighter relaxation (denoted by M+(C0)) than M(C0) by adding

one condition such that
(

1 xT

x X

)
∈ S1+n

+ (positive semidefinite)

to M(C0). Also, N+(C0) ⊆ Rn denotes the convex set projected from M+(C0) ⊆ S1+n
+ onto

the x-space. Theorems 2.4.1 and 2.4.2 hold not only for N(C0) but for N+(C0).

In the papers [32, 33], Kojima and Tunçel connected Algorithm 2.2.4 (the SSDP relax-

ation method) and Algorithm 2.2.5 (the SSILP relaxation method) to the Lovász-Schrijver’s

lift-and-project procedure. Now let us see how to apply Algorithms 2.2.4 and 2.2.5 to a 0-1

integer program (2.11). Let PF denote the set of quadratic functions:

xi(xi − 1) and − xi(xi − 1) (∀i = 1, 2, . . . , p). (2.13)

Then we can rewrite the 0-1 integer program under consideration as

max cT x

subject to x ∈ F ≡ {x ∈ C0 : p(x) ≤ 0 (∀p(·) ∈ PF)}.

}
(2.14)

Theorem 2.4.3 below shows that the conceptual SCRMs, introduced in Section 2.3.1, work

similar to N+ and N procedures.

CHAPTER 2. PRELIMINARIES ON SCRMS 22

Theorem 2.4.3. ([33]) Apply the conceptual SCRMs with D1 = ±I, D2 = D and Pk =

P2(Ck, D1, D2) to the 0-1 integer program (2.14). Then,

Nk
+(C0) = F̂ (C0,PF ∪ Pk) when we use Algorithm 2.2.4,

Nk(C0) = F̂
L
(C0,PF ∪ Pk) when we use Algorithm 2.2.5,

(k = 0, 1, 2, . . .).

The Balas, Ceria and Cornuéjols construction

Balas-Ceria-Cornuéjols [9] proposed another lift-and-project procedure where the origi-

nal constraints Ãx ≤ b̃ are multiplied by a single 0-1 variable and its complement before

projecting back onto the original space.

Step 0. Select an index j ∈ {1, . . . , p}.

Step 1. Multiply Ãix ≤ b̃i (i = 1, . . . , m) with 1 − xj and xj to obtain the nonlinear

system;

(1− xj)(Ãix− b̃i) ≤ 0, xj(Ãix− b̃i) ≤ 0, i = 1, . . . , m. (2.15)

Step 2. Linearize (2.15) by substituting yi for xixj (i = 1, . . . , n, i 6= j) and xj for x2
j .

Then, construct a polyhedron from such linearized constraints with variables x ∈ Rn

and y ∈ Rn−1. We designate the polyhedron as Mj(K).

Step 3. Project Mj(K) onto the x-space. Let Pj(K) denote the resulting polyhedron.

If the region C0 of (2.11) has m constraints and n variables, the polyhedron Mj(K)

consists of 2m constraints and 2n− 1 variables. For t ≥ 2, define

Pi1,...,it(C0) = Pit(Pit−1 . . . (Pi1(C0)) . . .).

Balas, Ceria and Cornuéjols have shown the following two theorems. Note that Theo-

rem 2.4.4 implies the claim of Theorem 2.4.1, since N(C0) ⊆ Pj(C0) for j ∈ {1, . . . , p}.

Theorem 2.4.4. ([9]) Pj(C0) = c.hull (C0 ∩ {x ∈ Rn : xj ∈ {0, 1}}) for j = 1, . . . , p.

Corollary 2.4.5. ([9]) Pi1,...,it(C0) = c.hull(C0 ∩ {x ∈ Rn : xj ∈ {0, 1}, j = i1, . . . , it}).

Theorem 2.4.6. ([9]) P1,...,p(C0) = c.hull(F).

CHAPTER 2. PRELIMINARIES ON SCRMS 23

The Sherali and Adams construction

Somewhat earlier than Lovász-Schrijver, Sherali-Adams [53] has proposed a similar pro-

cedure, which obtains the integer hull of the feasible region F in a noniterative fashion as

follows:

Step 0. Let t ∈ {1, . . . , p}.

Step 1. Multiply Ãx ≤ b̃ with every product of the form {Πj∈J1xj}{Πj∈J2(1−xj)}, where

J1 and J2 are disjoint subsets of {1, . . . , p} such that |J1 ∪ J2| = t. We designate the

resulting nonlinear system as (NLt).

Step 2. Linearize (NLt) by (i) substituting xj for x2
j ; and (ii) substituting a variable wJ

for every product Πj∈Jxj , where J ⊆ {1, . . . , p}, and vJk for every product xkΠj∈Jxj

where J ⊆ {1, . . . , p} and k ⊆ {p + 1, . . . , n}. Let Xt be the polyhedron defined by

the resulting linear functions.

Step 3. Project Xt onto the x-space. Let Ct denote the resulting polyhedron.

It is easy to see that F ⊆ Cp ⊆ . . . ⊆ C1 ⊆ C0. In addition, Sherali and Adams proved

the following theorem.

Theorem 2.4.7. ([53]) Cp = c.hull(F).

Balas, Ceria and Cornuéjols [9] have shown that Theorem 2.4.7 follows from Corollary 2.4.5.

The theorem also follows from Theorem 2.4.2, together with the proposition shown in [35]

such that Ct ⊆ N t(C0) for t = 1, 2, . . . , p.

2.4.2 The Reformulation-Linearization Technique for QOPs

The Sherali-Adams’ method, Reformulation-Linearization Technique (RLT), covers not only

0-1 integer linear programs but also 0-1 mixed-integer polynomial programs [54]. The exten-

sion of the RLT to continuous polynomial programs, which include the nonconvex quadratic

programs as a special case, was first developed by Sherali and Tuncbilek [56]. Recently,

Sherali and Tuncbilek [57] investigated a special RLT for a linearly constrained nonconvex

quadratic program;

max β + 2 pT x + xT Px subject to x ∈ F, (2.16)

where

F ≡

{
x ∈ Rn :

Ax ≤ b

0 ≤ lk ≤ xk ≤ uk <∞ k = 1, . . . , n

}

≡
{
x ∈ Rn : Ãx ≤ b̃

}
. (2.17)

CHAPTER 2. PRELIMINARIES ON SCRMS 24

For brevity of presentation, let us combine bound-factors such that lk ≤ xk ≤ uk (k =

1, . . . , n) and constraint-factors such that Ax ≤ b, as the last expression of (2.17) shows.

Supposing that Ã is an m × n matrix, we denote the ith constraint of (2.17) as Ãix ≤

b̃i (i = 1, . . . , m).

The procedure of the RLT consists of two steps in general terms; the reformulation step

and the linearization step. At the reformulation step, we take all possible pairwise products

among Ãix ≤ b̃i (i = 1, . . . , m), including self-products, and generate the following nonlinear

implied constraints:

−(Ãix− b̃i)(Ãjx− b̃j) ≤ 0, 1 ≤ ∀i ≤ ∀j ≤ m.

Here, we define the set of quadratic functions as P ≡ {−(Ãix − b̃i)(Ãjx − b̃j), 1 ≤ ∀i ≤

∀j ≤ m}, and then linearize quadratic functions of P by substituting

Xij = xixj , 1 ≤ ∀i ≤ ∀j ≤ n.

Using the notation introduced in Section 2.2, we obtain the following upper bounding linear

program:

(RLT-LP)

∣∣∣∣∣
max β + 2 pT x + P •X

subject to γ + 2 qT x + Q •X ≤ 0 (∀qf(·; γ, q,Q) ∈ P).
(2.18)

The set P has the pairwise products among a lower-bound constraint (`i ≤ xi) and an

upper-bound constraint (xi ≤ ui) of a variable xi, so that (RLT-LP) includes the following

linear constraints.
Xii ≤ (ui + li)xi − uili,
2li xi − l2i ≤ Xii, 2ui xi − u2

i ≤ Xii.

}
(2.19)

These inequalities approximate the relationship Xii = x2
i over the interval li ≤ xi ≤ ui.

As Reformulation-Convexification Approach (RCA), the paper [57] proposed another

technique which replaces (2.19) by the nonlinear constraints

x2
i ≤ Xii ≤ (ui + li)xi − uili. (2.20)

Notice that the upper bounding linear function of (2.20) is coincident with the first constraint

of (2.19). The last two constraints of (2.19) merely approximate the function Xii = x2
i from

below via tangential supports at the points li and ui. On the other hand, since (2.20) pro-

duces the exact lower envelope, it is equivalent to having an additional tangential support

at the optimum point. Therefore, the upper bounding problem which includes nonlinear

constraints (2.20) instead of linear constraints (2.19) generates a tighter approximate solu-

tion.

If we apply the SDP relaxation instead of the LP relaxation after the reformulation step

of the RLT, we obtain the following semidefinite program:

(RLT-SDP)

∣∣∣∣∣∣∣∣∣

max β + 2 pT x + P •X

subject to γ + 2 qT x + Q •X ≤ 0, (∀qf (·; γ, q,Q) ∈ P),(
1 xT

x X

)
∈ S1+n

+ .
(2.21)

CHAPTER 2. PRELIMINARIES ON SCRMS 25

The positive semidefinite condition of SDP (2.21) indicates that x2
i ≤ Xii for ∀i. Therefore,

(2.21) can provide tighter upper bounds for the problem (2.16) than the RCA.

Here, consider the SILP relaxation F̂
L
(C0,PF ∪ P0) with D1 = D2 = ±I and P0 =

PL(C0, D1)∪P
2(C0, D1, D2). Then all constraints of F̂

L
(C0,PF ∪P0) are included in RLT-

LP (2.18). Similarly, all constraints of the SDP relaxation F̂ (C0,PF ∪ P0) with the above

D1, D2 and P0 are included in RLT-SDP (2.21). Thus, RLT-LP and RLT-SDP generate

tighter upper bounds for a optimum objective function value of (2.16) than one applications

of the SILP relaxation and the SDP relaxation, respectively. Also, RLT-LP and RLT-SDP

include more constraints than F̂
L
(C0,PF ∪ P0) and F̂ (C0,PF ∪ P0), respectively. Indeed,

the RLT generates quadratic constraints by not only (bound-factor × bound-factor), but

(bound-factor × constraint-factor) and (constraint-factor × constraint-factor).

Chapter 3

Complexity Analysis for Conceptual
Relaxation Methods

This chapter investigates computational complexity of the conceptual SCRMs (successive

convex relaxation methods) given in Section 2.3.1. Theorem 2.4.3 indicates that when

applied to 0-1 integer programs, the conceptual SCRMs terminate in p iterations as the

lift-and-project procedure [35] does. Here p denotes the number of 0-1 variables. Therefore,

we can regard the conceptual SCRMs as the extensions of the lift-and-project procedure

proposed for 0-1 integer programs, to QOPs (1.2). In general cases where PF consists of

arbitrary quadratic functions, the convergence of {Ck (k = 0, 1, 2, . . .)} to c.hull(F) is slower

than linear in the worst case. (See an example in Section 8.3 of [32]). In the current chapter,

we bound the number k of iterations which Algorithm 2.2.4 or 2.2.5 requires to generate an

approximation of c.hull(F) with a given “accuracy.” See Section 2.2 for the description of

Algorithms 2.2.4 and 2.2.5.

We focus our attention on the three models of conceptual SCRMs presented in Sec-

tion 2.3.1; Spherical-SDP Model, Rank-2-SDP Model and Rank-2-SILP Model. At each

iteration, we need to prepare a set Pk of infinitely many quadratic functions before per-

forming the SDP (semidefinite programming) or SILP (semi-infinite LP) relaxation. Here

we assume that such a Pk is available.

Our complexity analysis of the Spherical-SDP Model is much simpler than that of Rank-

2-SDP Model or Rank-2-SILP Model, and the former analysis helps an easier understanding

of the latter two models. Therefore, in Section 3.2, we consider the Spherical-SDP Model

by taking a set of spherical functions for Pk. And then, in Section 3.3, we deal with the

Rank-2-SDP and the Rank-2-SILP Models whose Pk consists of rank-2 quadratic functions.

Here note that the Rank-2-SDP Model generates a tighter relaxed region Ck+1 from the

function set Pk than the Rank-2-SILP Model does. Indeed, the definitions of F̂ (C0,PF∪Pk)

and F̂
L
(C0,PF ∪ Pk) in (2.9) lead to the following inclusion relation; F̂ (C0,PF ∪ Pk) ⊆

F̂
L
(C0,PF ∪ Pk). Therefore, our complexity analysis on the Rank-2-SILP Model can be

applied simultaneously to the Rank-2-SDP Model. Thus, we mainly focus on the Rank-2-

SILP Model in Section 3.3.

26

CHAPTER 3. COMPLEXITY ANALYSIS 27

3.1 Accuracy Measures of Convex Relaxation

To begin with, we need to clarify the following issues.

• Input data of the conceptual SCRMs.

• Output of the methods and its quality or “accuracy.”

Our input data are a nonempty compact convex subset C0 of Rn and a set PF of finitely or

infinitely many quadratic functions. We do not care about how we represent the compact

convex set C0; it may be represented in terms of finitely or infinitely many linear inequalities,

nonlinear convex inequalities and/or linear matrix inequalities. Although it seems nonsense

to try to define the size of such input data, we extract some quantity and quality from the

input data. Concerning quality or difficulty of the input data, we introduce

diam(G) = sup{‖x− y‖ : x, y ∈ G} for ∀G ⊂ Rn

(the diameter of G ⊂ Rn),

νlip = νlip(PF , C0)= sup

{
|p(x)− p(y)|

‖x− y‖
: x, y ∈ C0,x 6= y, p(·) ∈ PF

}

(a common Lipschitz constant for all p(·) ∈ PF on C0),
νnc = νnc(PF)= sup {− inf{λmin(Q) : qf(·; γ, q,Q) ∈ PF}, 0} ,
νnl = νnl(PF)= sup{

∑n
i=1

∑n
j=1 |Qij| : qf(·; γ, q,Q) ∈ PF}.





(3.1)

Here λmin(Q) denotes the minimum eigenvalue of Q ∈ Sn. Note that all νlip(PF , C0),

νnc(PF) and νnl(PF) take either a finite nonnegative value or +∞. We will assume that

they are finite. If PF consists of a finite number of quadratic functions, this assumption

is satisfied. We may regard νnc(PF) as a nonconvexity measure of the set PF of quadratic

functions; all quadratic functions in PF are convex if and only if νnc(PF) = 0, and PF

involves more nonconvexity as νnc(PF) ≥ 0 gets larger. On the other hand, we may regard

νnl(PF) as a nonlinearity measure of the set PF of quadratic functions; all functions in PF

are linear if and only if νnl(PF) = 0, and PF involves more nonlinearity as νnl(PF) ≥ 0

gets larger. νlip(PF , C0), νnc(PF) and νnl(PF) directly affect the upper bounds that we will

derive for the number k of iterations required to generate an approximation of c.hull(F) with

a given certain accuracy. Also, the diameter diam(C0) of C0 and the diameter diam(F) of

F are relevant on our complexity analysis since C0 serves as an initial approximation of

c.hull(F) which we want to compute.

Our output is a compact set Ck ⊂ Rn, which is an approximation of c.hull(F). Again

we don’t care about its representation and size. In order to evaluate the quality or accuracy

of the approximation, we introduce the notation

F (ε)=F (ε, C0,PF)={x ∈ C0 : p(x) ≤ ε (∀p(·) ∈ PF)} for ∀ε ≥ 0. (3.2)

By definition, F = F (0) ⊂ F (ε1) ⊂ F (ε2) ⊂ C0 whenever 0 ≤ ε1 ≤ ε2. We say that a

compact convex subset C of C0 is an ε-convex-relaxation of F if it satisfies

F ⊂ C ⊂ c.hull(F (ε)).

CHAPTER 3. COMPLEXITY ANALYSIS 28

We set up an ε-convex-relaxation of F as our goal of the SCRMs. An ε-convex-relaxation of

F , however, is not easy to manipulate directly in our complexity analysis of Algorithms 2.2.4

and 2.2.5. Here, we introduce another notion (ψ,Ξ)-convex-relaxation of F which is easier

to manipulate, and relate it to the ε-convex-relaxation of F .

Let ψ > 0, let Ξ ⊂ Rn be a nonempty compact convex set, and define the n-dimensional

closed ball with a center ξ ∈ Rn and a radius ρ > 0 as B(ξ, ρ)={x ∈ Rn : ‖x − ξ‖ ≤ ρ}.

We say that a compact convex subset C of C0 is an (ψ,Ξ)-convex-relaxation of F (C0,PF)

if

F ⊂ C ⊂ c.relax(F (ψ),Ξ) =
⋂

ξ ∈ Ξ
B(ξ, ρ(F (ψ), ξ)).

The definition of c.relax(F (ψ),Ξ) is quite similar to that of (ψ, ρ)-approximation of c.hull(F)

given in Section 5 of [33]. Note that B(ξ, ρ(F (ψ), ξ)) in the definition of c.relax(F (ψ),Ξ)

corresponds to the minimum ball with the center ξ that contains F (ψ). It is easily verified

that given an arbitrary open convex set U containing F , if ψ > 0 is sufficiently small and

if Ξ is a sufficiently large ball with its center in C0, then F ⊂ c.relax(F (ψ),Ξ) ⊂ U . See

Lemma 5.1 of [33] and its proof. By definition, we also see that

c.relax(F (ψ),Ξ1) ⊃ c.relax(F (ψ),Ξ2) if Ξ1 ⊂ Ξ2.

We assume in the remainder of this section that there exists a finite common Lipschitz

constant for all p(·) ∈ PF ;

νlip = νlip(PF , C0)= sup

{
|p(x)− p(y)|

‖x− y‖
: x, y ∈ C0,x 6= y, p(·) ∈ PF

}
<∞.

If PF consists of a finite number of quadratic functions, then this assumption is satisfied.

Lemma 3.1.1. Let ξ0 ∈ C0 and ε > 0 . Choose positive numbers ψ, τ and a compact

convex set Ξ such that

ψ =
ε

2
, τ ≥

diam(C0)
2

2δ
+
δ

2
and Ξ = B(ξ0, 3τ/2), (3.3)

where

0 < δ ≤ min

{
ε

2 νlip

,
diam(C0)

4

}
. (3.4)

Then c.relax(F (ψ),Ξ) ⊂ c.hull(F (ε)).

Proof: If F (ψ) is empty, then the desired inclusion relation holds with ∅ ⊂ c.hull(F (ε)).

So we will deal with the case that F (ψ) is not empty.

CHAPTER 3. COMPLEXITY ANALYSIS 29

(i) Define a δ-neighborhood G of F (ψ) within C0 such that

G = {x ∈ C0 : B(x, δ) ∩ F (ψ) 6= ∅}

= {x ∈ C0 : ‖x− y‖ ≤ δ for ∃y ∈ F (ψ)}.

We show that c.hull(G) ⊂ c.hull(F (ε)). Suppose that x ∈ G. Then x ∈ C0 and there

exists a y ∈ F (ψ) such that ‖x− y‖ ≤ δ; hence

p(x) ≤ p(y) + |p(x)− p(y)|

≤ ψ + νlip ‖x− y‖

(by y ∈ F (ψ) and the definition of νlip)

≤ ε/2 + νlip δ (since ψ = ε/2 and ‖x− y‖ ≤ δ)

≤ ε (by (3.4)).

Thus we have shown that G ⊂ F (ε), which implies that c.hull(G) ⊂ c.hull(F (ε)).

(ii) In view of (i), it suffices to prove that

c.relax(F (ψ),Ξ) ⊂ c.hull(G).

Assuming that x̄ 6∈ c.hull(G), we show that x̄ 6∈ c.relax(F (ψ),Ξ). We will construct a

ball B(ξ̄, τ) ⊂ Rn such that

ξ̄ ∈ Ξ, x̄ 6∈ B(ξ̄, τ) and F (ψ) ⊂ B(ξ̄, τ). (3.5)

Then x̄ 6∈ c.relax(F (ψ),Ξ) follows from the definition of c.relax(F (ψ),Ξ). Let ȳ ∈

c.hull(F (ψ)) ⊂ C0 be the point that minimize the distance ‖x̄−y‖ over y ∈ c.hull(F (ψ)).

Let δ̄ = ‖x̄ − ȳ‖ and d̄ = (x̄ − ȳ)/δ̄. Then {y ∈ Rn : d̄
T
y = d̄

T
ȳ} forms a supporting

hyperplane of c.hull(F (ψ)) such that

d̄
T
y ≤ d̄

T
ȳ for ∀y ∈ c.hull(F (ψ)). (3.6)

We will show that δ̄ > δ. Assume on the contrary that δ̄ ≤ δ. Since ȳ lies in c.hull(F (ψ)),

there are y1,y2, . . . ,yk ∈ F (ψ) (1 ≤ ∃k ≤ n+ 1) such that

ȳ ∈ c.hull ({y1,y2, . . . ,yk}) .

Let

xj = yj + δ̄d̄ (j = 1, 2, . . . , k).

Then we see that

‖xj − yj‖ = ‖δ̄d̄‖ ≤ δ and yj ∈ F (ψ) (hence xj ∈ G) for ∀j = 1, 2, . . . , k,

x̄ = ȳ + δ̄d̄

∈ c.hull
(
{y1 + δ̄d̄,y2 + δ̄d̄, . . . ,yk + δ̄d̄}

)

= c.hull ({x1,x2, . . . ,xk}) .

CHAPTER 3. COMPLEXITY ANALYSIS 30

This implies that x̄ ∈ c.hull(G), which contradicts to the hypothesis that x̄ 6∈ c.hull(G).

Thus we have shown that δ̄ > δ.

(iii) Now defining ξ̄ = x̄− (τ + δ̄ − δ)d̄, we show that ξ̄ and the ball B(ξ̄, τ) satisfies

(3.5). From the definition of ξ̄ above and δ̄ > δ, we first observe that

x̄ 6∈ B(ξ̄, τ) (i.e., the 2nd relation of (3.5)),

ȳ = x̄− δ̄d̄ = ξ̄ + (τ + δ̄ − δ)d̄− δ̄d̄ = ξ̄ + (τ − δ)d̄. (3.7)

Next we will show that the third relation of (3.5), i.e., c.hull(F (ψ)) ⊂ B(ξ̄, τ). Suppose

that y ∈ c.hull(F (ψ)). Then

y − ξ̄ = (d̄d̄
T
)(y − ξ̄) +

(
I − d̄d̄

T
)

(y − ξ̄),

y − ȳ = (d̄d̄
T
)(y − ȳ) +

(
I − d̄d̄

T
)

(y − ȳ)

= (d̄d̄
T
)(y − ȳ) +

(
I − d̄d̄

T
)

(y − ξ̄ − (τ − δ)d̄) (by (3.7))

= (d̄d̄
T
)(y − ȳ) +

(
I − d̄d̄

T
)

(y − ξ̄).

Note that d̄d̄
T

and
(
I − d̄d̄

T
)

are orthogonal projection matrices onto the one dimensional

line {λd̄ : λ ∈ R} in Rn and its orthogonal complement, respectively. Therefore, from the

above equations, we see that ‖y − ξ̄‖2 = ‖(d̄d̄
T
)(y − ξ̄)‖2 + ‖

(
I − d̄d̄

T
)

(y − ξ̄)‖2 and

‖y − ȳ‖2 = ‖(d̄d̄
T
)(y − ȳ)‖2 + ‖

(
I − d̄d̄

T
)

(y − ξ̄)‖2, which derive that

‖y − ξ̄‖2 = ‖y − ȳ‖2 + ‖(d̄d̄
T
)(y − ξ̄)‖2 − ‖(d̄d̄

T
)(y − ȳ)‖2

≤ ‖y − ȳ‖2 + ‖(d̄d̄
T
)(y − ξ̄)‖2

≤ diam(C0)
2 +

(
d̄

T
(y − ξ̄)

)2
(since both y, ȳ ∈ (F (ψ)) ⊂ C0).

Furthermore

d̄
T
(ȳ − ξ̄) ≥ d̄

T
(y − ξ̄) (by (3.6))

= d̄
T
(ȳ − ξ̄ + y − ȳ)

= d̄
T
(
(τ − δ)d̄ + y − ȳ

)
(by (3.7))

≥ τ − δ − ‖y − ȳ‖ (since ‖d̄‖ = 1)

≥
diam(C0)

2

2δ
+
δ

2
− δ − diam(C0)

(by y, ȳ ∈ (F (ψ)) ⊂ C0 and (3.3))

= diam(C0)

(
diam(C0)

2δ
− 1

)
−
δ

2

≥ diam(C0)−
δ

2
(by (3.4))

≥ 4δ −
δ

2
(by (3.4))

> 0.

CHAPTER 3. COMPLEXITY ANALYSIS 31

Hence

‖y − ξ̄‖2 ≤ diam(C0)
2 +

(
d̄

T
(y − ξ̄)

)2

≤ diam(C0)
2 +

(
d̄

T
(ȳ − ξ̄)

)2

= diam(C0)
2 +

(
d̄

T
(τ − δ)d̄

)2
(by (3.7))

= diam(C0)
2 + τ 2 − 2δτ + δ2 (since ‖d̄‖ = 1)

≤ diam(C0)
2 + τ 2 − 2δ

(
diam(C0)

2

2δ
+
δ

2

)
+ δ2 (by (3.3))

= τ 2.

Thus we have seen that c.hull(F (ψ)) ⊂ B(ξ̄, τ).

(iv) Finally we will show that the first relation of (3.5), i.e.,, ξ̄ ∈ Ξ. From the

definition of τ , We know form (3.3) and (3.4) that

τ ≥
diam(C0)

2

2δ
+
δ

2
≥

diam(C0)

2δ
× diam(C0) ≥ 2diam(C0).

Hence if we choose a y ∈ c.hull(F (ψ)) ⊂ C0 ∩B(ξ̄, τ), then

‖ξ̄ − ξ0‖ ≤ ‖ξ̄ − y‖+ ‖y − ξ0‖ ≤ τ + diam(C0) ≤ 3τ/2.

This implies that ξ̄ ∈ Ξ=B(ξ0, 3τ/2).

Corollary 3.1.2. Assume that

ξ0 ∈ C0 and 0 < ε ≤
νlip diam(C0)

2
. (3.8)

Let

ψ =
ε

2
, τ ′ =

2νlip diam(C0)
2

ε
and Ξ = B(ξ0, τ

′). (3.9)

Then c.relax(F (ψ),Ξ) ⊂ c.hull(F (ε)).

Proof: Let δ =
ε

2 νlip

. By (3.8), δ satisfies the inequality (3.4) of Lemma 3.1.1. We also

see that

diam(C0)
2

2δ
+
δ

2
=

diam(C0)
2

2δ
+
δ2

2δ

≤
diam(C0)

2

2δ
+

diam(C0)
2

32δ
(by (3.4))

=
17 diam(C0)

2

32δ

=
17 νlip diam(C0)

2

16 ε
.

Hence if we take τ =
4 νlip diam(C0)

2

3 ε
, then τ satisfies (3.3) and the desired result follows.

CHAPTER 3. COMPLEXITY ANALYSIS 32

3.2 A Spherical-SDP Model

Throughout this section, we assume that νlip = νlip(PF , C0) < ∞ and νnc = νnc(PF) < ∞.

In the Spherical-SDP Model, we take Pk = PS(Ck) (the set of quadratic functions that

induce spherical valid inequalities for Ck) in Step 2 of Algorithm 2.2.4. Here we say that a

quadratic valid inequality p(x) ≤ 0 for Ck is spherical if p(·) : Rn → R is of the form

p(x) = (x− ξ)T (x− ξ)− ρ2

for ∃ξ ∈ Rn and ∃ρ > 0. Let {Ck} be the sequence of compact convex sets generated

by Algorithm 2.2.4 with Pk = PS(Ck) at every iteration. Then the sequence {Ck} enjoys

properties (a) monotonicity, (b) detecting infeasibility, and (c) asymptotic convergence,

which we stated in Theorem 2.3.1. Among these properties, only the monotonicity property

is relevant to the succeeding discussions.

Let ψ be an arbitrary positive number, and Ξ an arbitrary nonempty compact convex

set containing C0. In Lemma 3.2.2, we first present an upper bound k̂ for the number k of

iterations at which Ck attain an (ψ,Ξ)-convex-relaxation of F , i.e., Ck ⊂ c.relax(F (ψ),Ξ)

holds for the first time. Then in Theorem 3.2.3, we will apply Corollary 3.1.2 to this bound

to derive an upper bound k∗ for the number k of iterations at which Ck attains an ε-convex-

relaxation of F , i.e., Ck ⊂ c.hull(F (ε)) for the first time. Here ε denotes an arbitrarily given

positive number.

Let η=diam(Ξ). Define

δ̄ =





0 if νnc η
2 ≤ ψ,

(
1−

ψ

νnc η2

)1
2

otherwise.

By definition, we see that 0 ≤ δ̄ < 1.

Lemma 3.2.1. Let k ∈ {0, 1, 2, . . . }. For ∀ξ ∈ Ξ, define

ρ′(ξ)= max
{
ρ (F (ψ), ξ) , δ̄ρ(Ck, ξ)

}
.

Then

Ck+1 ⊂
⋂

ξ ∈ Ξ
B(ξ, ρ′(ξ)).

Proof: It suffices to show that Ck+1 ⊂ B(ξ, ρ′(ξ)) for ∀ξ ∈ Ξ. For an arbitrarily fixed

ξ ∈ Ξ, let

ρk = ρ(Ck, ξ) and ρ′=max
{
ρ (F (ψ), ξ) , δ̄ρk

}
.

Since ξ ∈ Ξ and Ck ⊂ C0 ⊂ Ξ, we see that

ρk ≤ η, (3.10)

CHAPTER 3. COMPLEXITY ANALYSIS 33

which will be used later. If ρ (F (ψ), ξ) ≥ ρk then ρ′ = ρ (F (ψ), ξ) ≥ ρk. In this case

the desired result follows from the monotonicity, i.e., Ck+1 ⊂ Ck. Now suppose that

ρ (F (ψ), ξ) < ρk. Assuming that x̄ 6∈ B(ξ, ρ′), we derive x̄ 6∈ Ck+1. If x̄ 6∈ Ck, we

obviously see that x̄ 6∈ Ck+1 because Ck+1 ⊂ Ck. Hence we only need to deal with the

case that

x̄ ∈ Ck ⊂ C0, ρ (F (ψ), ξ) ≤ ρ′ < ‖x̄− ξ‖ ≤ ρk. (3.11)

We will show that

qf(·; γ̄, q̄, Q̄) + g(·) ∈ Q+, (3.12)

qf(x̄; γ̄, q̄, Q̄) + g(x̄) > 0. (3.13)

for ∃qf (·; γ̄, q̄, Q̄) ∈ PF and ∃g(·) ∈ c.cone (Pk) = c.cone
(
PS(Ck)

)
in 3 steps (i), (ii) and

(iii) below. Then x̄ 6∈ Ck+1 follows from Lemma 2.2.3.

(i) The relations in (3.11) imply that x̄ ∈ C0 and x̄ 6∈ F (ψ). Hence there exists a

quadratic function qf(·; γ̄, q̄, Q̄) ∈ PF such that qf(x̄; γ̄, q̄, Q̄) > ψ.

(ii) By the definition of ρk, we also know that the quadratic function

p(x)=(x− ξ)T (x− ξ)− ρ2
k (∀x ∈ Rn)

is a member of PS(Ck). Let g(·) = νnc p(·). By the definition of νnc, all the eigenvalues of

the Hessian matrix of the quadratic function qf(·; γ̄, q̄, Q̄) ∈ PF are not less than −νnc.

Hence (3.12) follows.

(iii) Finally we observe that

g(x̄) + qf(x̄; γ̄, q̄, Q̄) = νnc p(x̄) + qf(x̄; γ̄, q̄, Q̄)

> νnc

(
(x̄− ξ)T (x̄− ξ)− ρ2

k

)
+ ψ

≥ νnc

(
(δ̄ρk)

2 − ρ2
k

)
+ ψ (since δ̄ρk ≤ ρ′ < ‖x̄− ξ‖)

= −νnc

(
1− δ̄2

)
ρ2

k + ψ

≥ −νnc

(
1− δ̄2

)
η2 + ψ (by (3.10))

≥ 0 (by the definition of δ̄).

Thus we have shown (3.13).

Lemma 3.2.2. Suppose that diam(F) > 0. Define

k̂ =





1 if νnc η
2 ≤ ψ,

⌈
2νnc η

2

ψ
ln

2η

diam(F)

⌉
otherwise.

If k ≥ k̂, then Ck ⊂ c.relax(F (ψ),Ξ).

CHAPTER 3. COMPLEXITY ANALYSIS 34

Proof: For every ξ ∈ Ξ and k = 0, 1, 2, . . . , define

ρk(ξ)= max {ρ (F (ψ), ξ) , ρ(Ck, ξ)} .

It suffices to show that if k ≥ k̂ then

ρk(ξ) ≤ ρ (F (ψ), ξ) for ∀ξ ∈ Ξ. (3.14)

In fact, if (3.14) holds, then

Ck ⊂
⋂

ξ∈Ξ
B(ξ, ρk(ξ)) ⊂

⋂

ξ∈Ξ
B (ξ, ρ (F (ψ), ξ)) = c.relax(F (ψ),Ξ).

By Lemma 3.2.1,

ρk+1(ξ) ≤ max
{
ρ (F (ψ), ξ) , δ̄ρk(ξ)

}
for ∀k = 0, 1, 2,

This implies that

ρk(ξ) ≤ max
{
ρ (F (ψ), ξ) , δ̄kρ0(ξ)

}
for ∀ξ ∈ B(η) and ∀k = 0, 1, 2,

Hence, for each ξ ∈ Ξ, if k satisfies the inequality

δ̄kρ0(ξ) ≤ ρ (F (ψ), ξ) , (3.15)

then ρk(ξ) ≤ ρ (F (ψ), ξ). When νnc η
2 ≤ ψ, we see that δ̄ = 0 by definition. Hence (3.15)

holds for k = 1. Now assume that νnc η
2 > ψ. Then δ̄ > 0. Since

F ⊂ F (ψ) ⊂ C0 ⊂ Ξ,

we see that

diam(F)/2 ≤ ρ (F (ψ), ξ) ≤ ρ0(ξ) ≤ η for ∀ξ ∈ Ξ,

Hence, if δ̄kη ≤ diam(F)/2, or equivalently, if

k(− ln δ̄) ≥ ln
2η

diam(F)
,

then (3.15) holds. We also see from the definition of δ̄ that

− ln δ̄ = −
1

2
ln

(
1−

ψ

νnc η2

)
≥

ψ

2νnc η2
> 0.

Therefore if
kψ

2νnc η2
≥ ln

2η

diam(F)
, then (3.15) holds. Consequently we have shown that

if k ≥
2νnc η

2

ψ
ln

2η

diam(F)
, then (3.14) holds.

Now we are ready to present our main result in this section.

CHAPTER 3. COMPLEXITY ANALYSIS 35

Theorem 3.2.3. Assume (3.8) as in Corollary 3.1.2 and diam(F) > 0. Define

k∗ =





1 if (νlip)
2 νnc diam(C0)

4 ≤
ε3

32
,

⌈
64 (νlip)

2 νnc diam(C0)
4

ε3
ln

8 νlip diam(C0)
2

ε diam(F)

⌉
otherwise.

If k ≥ k∗, then Ck ⊂ c.hull(F (ε)).

It is interesting to note that the bound k∗ is proportional to the nonconvexity νnc of PF ,

and k∗ = 1 when quadratic functions in PF are almost convex.

Proof of Theorem 3.2.3: Choose positive numbers ψ, τ ′ and a compact convex

set Ξ ⊂ Rn as in (3.9) of Corollary 3.1.2. Then c.relax(F (ψ),Ξ) ⊂ c.hull(F (ε)). Let

η = diam(Ξ) = 2τ ′. Now, define k̂ as in Lemma 3.2.2. By Lemma 3.2.2, if k ≥ k̂ then

Ck ⊂ c.relax(F (ψ),Ξ) ⊂ c.hull(F (ε)).

On the other hand, we see that

νnc η
2 = νnc (2τ ′)

2

= νnc

(
4 νlip diam(C0)

2

ε

)2

=
16 (νlip)

2 νnc diam(C0)
4

ε2
.

Hence the inequality νnc η
2 ≤ ψ appeared in the definition of k̂ can be rewritten as

(νlip)
2 νnc diam(C0)

4 ≤
ε3

32
.

We also see that

2 νnc η
2

ψ
ln

2η

diam(F)

=
2 νnc (2τ ′)2

ε/2
ln

4 τ ′

diam(F)

=
64 (νlip)

2 νnc diam(C0)
4

ε3
ln

8 νlip diam(C0)
2

ε diam(F)
.

Therefore k∗ = k̂.

3.3 Rank-2 Models

We discuss Rank-2-SDP and Rank-2-SILP Models of conceptual SCRMs simultaneously,

which are introduced in Section 2.3.1. For simplicity of notation, we use P̃
2
(Ck) instead of

P2(Ck,±D1, D2) with D1 = ±I and D2 = D, i.e.,

P̃
2
(Ck) = {r2sf(·;Ck,d1,d2) : d1 ∈ ±I, d2 ∈ D}.

CHAPTER 3. COMPLEXITY ANALYSIS 36

in this section. In both Rank-2 models, we take Pk = P̃
2
(Ck) in Step 2 of Algorithms 2.2.4

and 2.2.5, respectively. Let {Ck} be the sequence of compact convex sets generated by Algo-

rithm 2.2.4 or Algorithm 2.2.5. Then the sequence {Ck} enjoys properties (a) monotonicity,

(b) detecting infeasibility, and (c) asymptotic convergence, which we stated in Section 2.3.1.

Let ε be an arbitrarily given positive number. We will derive an upper bound k∗ in The-

orem 3.3.4 at the end of this section for the number k of iterations at which Ck attains

an ε-convex-relaxation of F . The argument of the derivation of the bound k∗ will proceed

in a similar way as in the Spherical-SDP Model, although it is more complicated. In the

derivation of the bound in the Spherical-SDP Model, it was a key to show the existence of a

quadratic function g(·) ∈ c.cone (Pk) = c.cone
(
PS(Ck)

)
satisfying the relations (3.12) and

(3.13). We need a sophisticated argument, which we develop in Section 3.3.1, to construct

a quadratic function g(·) ∈ c.cone (Pk) = c.cone
(
P̃

2
(Ck)

)
satisfying the corresponding

relations (3.22) and (3.23) in the Rank-2-SDP and the SILP Models.

3.3.1 Convex Cones of Rank-2 Quadratic Supporting Functions

for n-dimensional Balls

In this subsection, we are concerned with c.cone
(
P̃

2
(B(ξ, ρ))

)
, where ξ ∈ Rn and ρ > 0.

Let d1 ∈ ±I and d2 ∈ D. Note that if Ck ⊂ B(ξ, ρ), r2sf(·;B(ξ, ρ),d1,d2) ∈ P̃
2
(B(ξ, ρ))

and r2sf(·;Ck,d1,d2) ∈ P̃
2
(B(ξ, ρ)), then r2sf(·;B(ξ, ρ),d1,d2) induces a weaker valid

inequality for Ck than r2sf(·;Ck,d1,d2) in the sense that

r2sf(x;B(ξ, ρ),d1,d2) ≤ r2sf(x;Ck,d1,d2) ≤ 0 for ∀x ∈ Ck.

This fact will be utilized in our complexity analysis of the Rank-2 Models in the next

subsection. For simplicity of notation, we only deal with the case that ξ = 0.

For ∀θ ∈ (0, π/8], ∀w ∈ D, and ∀i = 1, 2, . . . , n, define

νi(θ,w)=‖w cos θ + ei sin θ‖, ν̄i(θ,w)=‖w cos θ − ei sin θ‖,

bi(θ,w)=
w cos θ + ei sin θ

νi(θ,w)
∈ D, b̄i(θ,w)=

w cos θ − ei sin θ

ν̄i(θ,w)
∈ D,

λi(θ,w)=
νi(θ,w)

2 sin θ
, λ̄i(θ,w)=

ν̄i(θ,w)

2 sin θ
.





For ∀x ∈ Rn, ∀ρ > 0, ∀θ ∈ (0, π/8], ∀w ∈ D, ∀i = 1, 2, . . . , n, and ∀j = 1, 2, . . . , n, define

f+
ij (x; ρ, θ,w) = λi(θ,w) r2sf(x;B(0, ρ),−ej, bi(θ,w))

+λ̄i(θ,w) r2sf(x;B(0, ρ), ej , b̄i(θ,w))

= −λi(θ,w)
(
bi(θ,w)T x− ρ

) (
−eT

j x− α(−ej, C0)
)

−λ̄i(θ,w)
(
b̄i(θ,w)T x− ρ

) (
eT

j x− α(ej, C0)
)
,

f−ij (x; ρ, θ,w) = λi(θ,w) r2sf(x;B(0, ρ), ej , bi(θ,w))
+λ̄i(θ,w) r2sf(x;B(0, ρ),−ej, b̄i(θ,w))

= −λi(θ,w)
(
bi(θ,w)T x− ρ

) (
eT

j x− α(ej, C0)
)

−λ̄i(θ,w)
(
b̄i(θ,w)T x− ρ

) (
−eT

j x− α(−ej, C0)
)
.





(3.16)

CHAPTER 3. COMPLEXITY ANALYSIS 37

Essentially the same functions as the quadratic functions f+
ij (·; ρ, θ,w) and f−ij (·; ρ, θ,w)

(i, j = 1, 2, . . . , n) were introduced in the paper [33], and the lemma below is a further

elaboration of Lemma 4.4 of [33] on their basic properties.

Lemma 3.3.1. Let ρ > 0, θ ∈ (0, π/8], w ∈ D, i ∈ {1, 2, . . . , n}, and j ∈ {1, 2, . . . , n}.

(i) f+
ij (·; ρ, θ,w), f−ij (·; ρ, θ,w) ∈ c.cone

(
P̃

2
(B(0, ρ))

)
.

(ii)+ The Hessian matrix of the quadratic function f+
ij (·; ρ, θ,w) : Rn → R coincides with

the n× n matrix
eie

T
j + eje

T
i

2
.

(ii)− The Hessian matrix of the quadratic function f−ij (·; ρ, θ,w) : Rn → R coincides with

the n× n matrix −
eie

T
j + eje

T
i

2
.

(iii) Suppose that δ ∈ [0, 1] and δρw ∈ C0. Then

f+
ij (δρw; ρ, θ,w), f−ij (δρw; ρ, θ,w) ∈

[
−ρ diam(C0)

(
1− δ(1− θ2/2)

θ − θ3/6
+ 1− δ +

θ2

2

)
, 0

]
.

(iv) Suppose that κ ≥ 0, 1 ≥ δ ≥ 1− κθ ≥ 0 and δρw ∈ C0. Then

f+
ij (δρw; ρ, θ,w), f−ij (δρw; ρ, θ,w) ∈ [−2ρ diam(C0)(κ+ θ), 0] .

Proof: We will only show the relations on f+
ij (·; ρ, θ,w) because we can derive the

corresponding relations on f−ij (·; ρ, θ,w) quite similarly. First, assertion (i) follows directly

from the definitions (3.16).

(ii)+. The Hessian matrix of the quadratic function f+
ij (·; ρ, θ,w) : Rn → R turns out

to be the symmetric part of the matrix

−
(
−λi(θ,w) bi(θ,w)eT

j + λ̄i(θ,w) b̄i(θ,w)eT
j

)

= −
1

2 sin θ

(
−(w cos θ + ei sin θ)e

T
j + (w cos θ − ei sin θ)e

T
j

)

= −
1

2 sin θ

(
−2(sin θ)(eie

T
j)
)

= eie
T
j .

Thus we have shown (ii)+.

(iii) By definition, we have that

f+
ij (δρw; ρ, θ,w)

= −
1

2 sin θ
(ρ

(
(w cos θ + ei sin θ)

T (δw)− νi(θ,w)
) (
−eT

j (δρw)− α(−ej, C0)
)

+ ρ
(
(w cos θ − ei sin θ)

T (δw)− ν̄i(θ,w)
) (

eT
j (δρw)− α(ej, C0)

)
) .

CHAPTER 3. COMPLEXITY ANALYSIS 38

We will evaluate each term appeared in the right hand side. We first observe that

νi(θ,w) = ‖w cos θ + ei sin θ‖

=
(
‖w cos θ‖2 + ‖ei sin θ‖

2 + 2eT
i w cos θ sin θ

)1/2

=
(
1 + 2eT

i w cos θ sin θ
)1/2

≤ 1 + eT
i w cos θ sin θ,

where the last inequality follows from

0 ≤ (1 + ξ)1/2 ≤ 1 +
1

2
ξ for ∀ξ ≥ −1.

Hence

0 ≥ (w cos θ + ei sin θ)
T (δw)− νi(θ,w)

≥ δ(cos θ + eT
i w sin θ)−

(
1 + eT

i w cos θ sin θ
)

= δ cos θ − 1 + eT
i w(sin θ)(δ − cos θ)

≥ δ cos θ − 1− (sin θ)| cos θ − δ|.

Similarly

ν̄i(θ,w) = ‖w cos θ − ei sin θ‖

=
(
‖w cos θ‖2 + ‖ei sin θ‖

2 − 2eT
i w cos θ sin θ

)1/2

=
(
1− 2eT

i w cos θ sin θ
)1/2

≤ 1− eT
i w cos θ sin θ,

0 ≥ (w cos θ − ei sin θ)
T (δw)− ν̄i(θ,w)

≥ δ(cos θ − eT
i w sin θ)−

(
1− eT

i w cos θ sin θ
)

= δ cos θ − 1− eT
i w(sin θ)(δ − cos θ)

≥ δ cos θ − 1− (sin θ)| cos θ − δ|.

Since δρw ∈ C0, we also see that

0 ≥ −eT
j (δρw)− α(−ej , C0) ≥ −diam(C0),

0 ≥ eT
j (δρw)− α(ej , C0) ≥ −diam(C0).

Therefore

f+
ij (δρw; ρ, θ,w) ≥ −

ρ

2 sin θ
× 2 (δ cos θ − 1− (sin θ)| cos θ − δ|) (−diam(C0))

= −
ρ diam(C0)

sin θ
(1− δ cos θ + (sin θ)| cos θ − δ|)

= −ρ diam(C0)

(
1− δ cos θ

sin θ
+ | cos θ − δ|

)

= −ρ diam(C0)

(
1− δ(1− θ2/2 + θ̃4/24)

θ − θ3/6 + θ̄5/120
+ |1− θ̂2/2− δ|

)

≥ −ρ diam(C0)

(
1− δ(1− θ2/2)

θ − θ3/6
+ 1− δ +

θ2

2

)
(since 1 ≥ δ).

CHAPTER 3. COMPLEXITY ANALYSIS 39

Here θ̃, θ̄, θ̂ ∈ [0, θ].

(iv) We see from (iii) that

f+
ij (δρw; ρ, θ,w) ≥ −ρ diam(C0)

(
1− δ(1− θ2/2)

θ(1− θ2/6)
+ 1− δ +

θ2

2

)

≥ −ρ diam(C0)

(
κθ + δθ2/2

θ(1− θ2/6)
+ κθ +

θ2

2

)
(since 1 ≥ δ ≥ 1− κθ)

≥ −ρ diam(C0)

(
κ+ θ/2

1− θ2/6
+ κθ +

θ2

2

)
(since 1 ≥ δ)

≥ −2ρ diam(C0)(κ+ θ) (since θ ∈ (0, π/8]).

3.3.2 Complexity Analysis

In the remainder of the section, we assume that νlip = νlip(PF , C0) <∞ and νnl = νnl(PF) <

∞. Let {Ck} be the sequence of compact convex sets generated by either Algorithm 2.2.4

or Algorithm 2.2.5 with taking Pk = P̃
2
(Ck) at each iteration. Let ψ be an arbitrary

positive number, and Ξ an arbitrary compact convex set containing C0. In Lemma 3.3.3,

we derive an upper bound k̂ for the number k of iterations at which Ck attains a (ψ,Ξ)-

convex-relaxation of F , i.e., Ck ⊂ c.relax(F (ψ),Ξ) holds for the first time. Then we will

combine Lemmas 3.1.1 and 3.3.3 to derive an upper bound k∗ for the number k of iterations

at which Ck attains an ε-convex-relaxation of F . Here ε denotes an arbitrarily given positive

number.

Let η=diam(Ξ). Define

κ̄ =





8

π
if νnl ≤

π ψ

32 η diam(C0)
,

ψ

4η νnl diam(C0)
otherwise,

θ̄ =





π

8
if νnl ≤

2ψ

π η diam(C0)
,

ψ

4η νnl diam(C0)
otherwise,

δ̄ = 1− κ̄θ̄.

It should be noted that κ̄ and θ̄ are not greater than
8

π
and

π

8
, respectively, and also that

π ψ

32 η diam(C0)
≤

2ψ

π η diam(C0)
. By definition, we see that

1 = κ̄θ̄ if νnl ≤
π ψ

32 η diam(C0)
,

1 > κ̄θ̄ ≥

(
ψ

4η νnl diam(C0)

)2

otherwise,





(3.17)

CHAPTER 3. COMPLEXITY ANALYSIS 40

δ̄ = 0 if νnl ≤
π ψ

32 η diam(C0)
,

1 > δ̄ > 0 otherwise,





(3.18)

ψ

2η diam(C0)
≥

(
κ̄+ θ̄

)
νnl ≥ 0. (3.19)

Lemma 3.3.2. Let k ∈ {0, 1, 2, . . . }. For ∀ξ ∈ Ξ, define

ρ′(ξ)= max
{
ρ (F (ψ), ξ) , δ̄ρ(Ck, ξ)

}
.

Then

Ck+1 ⊂
⋂

ξ ∈ Ξ
B(ξ, ρ′(ξ)).

Proof: It suffices to show that Ck+1 ⊂ B(ξ, ρ′(ξ)) for ∀ξ ∈ Ξ. For an arbitrarily fixed

ξ ∈ Ξ, let

ρk = ρ(Ck, ξ) and ρ′=max
{
ρ (F (ψ), ξ) , δ̄ρk

}
.

We may assume without loss of generality that ξ = 0 because Algorithms 2.2.4 and 2.2.5

with taking Pk = P̃
2
(Ck) at each iteration are invariant under any parallel transformation.

See [33] for more details. Since ξ = 0 ∈ Ξ and Ck ⊂ C0 ⊂ Ξ, we see that

ρk ≤ η, (3.20)

which will be used later. If ρ (F (ψ), 0) ≥ ρk then ρ′ = ρ (F (ψ), 0) ≥ ρk. In this case the

desired result follows from Ck+1 ⊂ Ck. Now suppose that ρ (F (ψ), 0) < ρk. Assuming

that x̄ 6∈ B(0, ρ′), we will derive that x̄ 6∈ Ck+1. If x̄ 6∈ Ck, we obviously see x̄ 6∈ Ck+1

because Ck+1 ⊂ Ck. Hence we only need to deal with the case that

x̄ ∈ Ck ⊂ C0, ρ (F (ψ), 0) ≤ ρ′ < ‖x̄− 0‖ ≤ ρk. (3.21)

We will show that

qf(·; γ̄, q̄, Q̄) + g(·) ∈ L, (3.22)

qf(x̄; γ̄, q̄, Q̄) + g(x̄) > 0. (3.23)

for ∃qf (·; γ̄, q̄, Q̄) ∈ PF and ∃g(·) ∈ Pk = P̃
2
(Ck) in 3 steps (i), (ii) and (iii) below.

Since L ⊂ Q+, Lemma 2.2.3 shows x̄ 6∈ Ck+1 in both cases of the Rank-2-SDP Model

(Algorithm 2.2.4) and the SILP Model (Algorithm 2.2.5).

(i) The relations in (3.21) imply that x̄ ∈ C0 and x̄ 6∈ F (ψ). Hence there exists a

quadratic function qf(·; γ̄, q̄, Q̄) ∈ PF such that qf(x̄; γ̄, q̄, Q̄) > ψ.

CHAPTER 3. COMPLEXITY ANALYSIS 41

(ii) Let w̄ = x̄/‖x̄‖, and δ = ‖x̄‖/ρk. Then we see that

x̄ = ‖x̄‖w̄ = δρkw̄,

1 ≥ δ = ‖x̄‖/ρk > ρ′/ρk ≥ δ̄ = 1− κ̄θ̄ ≥ 0.

We will represent the symmetric matrix Q̄ as the difference of two n × n symmetric

matrices Q̄
+

and Q̄
−

with nonnegative elements such that

Q̄ = Q̄
+
− Q̄

−
, Q̄+

ij ≥ 0, Q̄−
ij ≥ 0, and Q̄+

ijQ̄
−
ij = 0 (i, j = 1, 2, . . . , n).

For ∀x ∈ Rn, ∀i = 1, 2, . . . , n, and ∀j = 1, 2, . . . , n, we now define

g+
ij(x) = λi(θ̄, w̄) r2sf(x;Ck,−ej , bi(θ̄, w̄))

+λ̄i(θ̄, w̄) r2sf(x;Ck, ej, b̄i(θ̄, w̄))

= −λi(θ̄, w̄)
(
bi(θ̄, w̄)T x− α(bi(θ̄, w̄), Ck)

) (
−eT

j x− α(−ej , C0)
)

−λ̄i(θ̄, w̄)
(
b̄i(θ̄, w̄)T x− α(b̄i(θ̄, w̄), Ck)

) (
eT

j x− α(ej , C0)
)
,

g−ij(x) = λi(θ̄, w̄) r2sf(x;Ck, ej, bi(θ̄, w̄))
+λ̄i(θ̄, w̄) r2sf(x;Ck,−ej , b̄i(θ̄, w̄))

= −λi(θ̄, w̄)
(
bi(θ̄, w̄)T x− α(bi(θ̄, w̄), Ck)

) (
eT

j x− α(ej , C0)
)

−λ̄i(θ̄, w̄)
(
b̄i(θ̄, w̄)T x− α(b̄i(θ̄, w̄), Ck)

) (
−eT

j x− α(−ej , C0)
)
,

g(x) =
∑n

i=1

∑n
j=1

(
Q̄−

ijg
+
ij(x) + Q̄+

ijg
−
ij(x)

)
,

f(x) =
∑n

i=1

∑n
j=1

(
Q̄−

ijf
+
ij (x; ρk, θ̄, w̄) + Q̄+

ijf
−
ij (x; ρk, θ̄, w̄)

)
.





(3.24)

Here f+
ij (·; ρk, θ̄, w̄) and f−ij (x; ρk, θ̄, w̄)) are defined as in (3.16). By construction, g(·) ∈

P̃
2
(Ck). We also see that g(·) has the same Hessian matrix Q̄

−
− Q̄

+
= −Q̄ as f(·) does.

See Lemma 3.3.1. Hence the Hessian matrix of the quadratic function g(·) + qf(·; γ̄, q̄, Q̄)

vanishes. Thus we have shown (3.22).

(iii) Finally we observe that

0 ≥ g(x̄)

≥ f(x̄) (since x̄ ∈ Ck ⊂ B(0, ρk))

= f(δρkw̄)

=
n∑

i=1

n∑

j=1

(
Q̄+

ijf
+
ij (δρkw̄; ρk, θ̄, w̄) + Q̄−

ijf
−
ij (δρkw̄; ρk, θ̄, w̄)

)

≥
n∑

i=1

n∑

j=1

(
Q̄+

ij

(
−2ρk diam(C0)(κ̄+ θ̄)

)
+ Q̄−

ij

(
−2ρk diam(C0)(κ̄+ θ̄)

))

(by (iv) of Lemma 3.3.1)

= −2ρk diam(C0)(κ̄+ θ̄)
n∑

i=1

n∑

j=1

(
Q̄+

ij + Q̄−
ij

)

CHAPTER 3. COMPLEXITY ANALYSIS 42

= −2ρk diam(C0)(κ̄+ θ̄)
n∑

i=1

n∑

j=1

|Q̄ij|

≥ −2η diam(C0)(κ̄+ θ̄) νnl

≥ −ψ (by (3.19)).

Therefore g(x̄) + qf(x̄; γ̄, q̄, Q̄) > 0.

Lemma 3.3.3. Suppose that diam(F) > 0. Define

k̂ =





1 if νnl ≤
π ψ

32 η diam(C0)
,




(
4η νnl diam(C0)

ψ

)2

ln
2η

diam(F)




otherwise.

If k ≥ k̂, then Ck ⊂ c.relax(F (ψ),Ξ).

Proof: For every ξ ∈ Ξ and k = 0, 1, 2, . . . , define

ρk(ξ)= max {ρ (F (ψ), ξ) , ρ(Ck, ξ)} .

It suffices to show that if k ≥ k̂ then

ρk(ξ) ≤ ρ (F (ψ), ξ) for ∀ξ ∈ Ξ. (3.25)

In fact, if (3.25) holds, then

Ck ⊂
⋂

ξ∈Ξ

B(ξ, ρk(ξ)) ⊂
⋂

ξ∈Ξ

B (ξ, ρ (F (ψ), ξ)) = c.relax(F (ψ),Ξ).

By Lemma 3.3.2,

ρk+1(ξ) ≤ max
{
ρ (F (ψ), ξ) , δ̄ρk(ξ)

}
(k = 0, 1, 2, . . .).

This implies that

ρk(ξ) ≤ max
{
ρ (F (ψ), ξ) , δ̄kρ0(ξ)

}
for ∀ξ ∈ Ξ and ∀k = 0, 1, 2,

Hence, for each ξ ∈ Ξ, if k satisfies the inequality

δ̄kρ0(ξ) ≤ ρ (F (ψ), ξ) , (3.26)

then ρk(ξ) ≤ ρ (F (ψ), ξ). When νnl ≤
π ψ

32 η diam(C0)
, we see by (3.18) that δ̄ = 0. Hence

(3.25) holds for k = 1. Now assume that νnl >
π ψ

32 η diam(C0)
. Then δ̄ > 0 by (3.18).

Since

F ⊂ F (ψ) ⊂ C0 ⊂ Ξ,

CHAPTER 3. COMPLEXITY ANALYSIS 43

we see that

diam(F)/2 ≤ ρ (F (ψ), ξ) ≤ ρ0(ξ) ≤ η for ∀ξ ∈ Ξ,

Hence, if δ̄kη ≤ diam(F)/2, or equivalently, if

k(− ln δ̄) ≥ ln
2η

diam(F)
,

then (3.26) holds. We also see by the definition of δ̄ and (3.17) that

− ln δ̄ = − ln
(
1− κ̄θ̄

)
≥ κ̄θ̄ ≥

(
ψ

4η νnl diam(C0)

)2

> 0.

Therefore if k

(
ψ

4η νnl diam(C0)

)2

≥ ln
2η

diam(F)
, then (3.26) holds. Consequently we

have shown that if k ≥

(
4η νnl diam(C0)

ψ

)2

ln
2η

diam(F)
then (3.25) holds.

Theorem 3.3.4. Assume (3.8) as in Corollary 3.1.2 and diam(F) > 0. Define

k∗ =





1 if νnl ≤
π ε2

256 νlip diam(C0)3
,




(
32 νlip νnl diam(C0)

3

ε2

)2

ln
8 νlip diam(C0)

2

ε diam(F)




otherwise.

If k ≥ k∗, then Ck ⊂ c.hull(F (ε)).

Note that the bound k∗ is proportional to the square of the nonlinearity νnl of PF , and

also that k∗ = 1 when any function in PF is almost linear.

Proof of Theorem 3.3.4: Choose positive numbers ψ, τ ′ and a compact convex

set Ξ ⊂ Rn as in (3.9) of Corollary 3.1.2. Then c.relax(F (ψ),Ξ) ⊂ c.hull(F (ε)). Let

η = diam(Ξ) = 2τ ′. Now, define k̂ as in Lemma 3.3.3. By Lemma 3.3.3, if k ≥ k̂ then

Ck ⊂ c.relax(F (ψ),Ξ) ⊂ c.hull(F (ε)).

On the other hand, we see that

π ψ

32 η diam(C0)
=

π ε/2

32 (2τ ′) diam(C0)

=
π ε

128 diam(C0)

(
ε

2 νlip diam(C0)2

)
(by (3.9))

=
π ε2

256 νlip diam(C0)3
.

CHAPTER 3. COMPLEXITY ANALYSIS 44

Hence the inequality νnl ≤
π ψ

32 η diam(C0)
appeared in the definition of k̂ can be rewritten

as

νnl ≤
π ε2

256 νlip diam(C0)3
.

We also see that
(

4η νnl diam(C0)

ψ

)2

ln
2η

diam(F)

=

(
8τ ′ νnl diam(C0)

ε/2

)2

ln
4τ ′

diam(F)

=

(
16(2 νlip diam(C0)

2) νnl diam(C0)

ε2

)2

ln
4(2 νlip diam(C0)

2)

ε diam(F)

=

(
32 νlip νnl diam(C0)

3

ε2

)2

ln
8 νlip diam(C0)

2

ε diam(F)

Therefore k∗ = k̂.

3.4 Some Remarks

(A) In the Spherical-SDP Model, we have assumed that every ball with a given center

ξ ∈ Rn that contains the kth iterate Ck is available. This assumption means that for a

given ξ ∈ Rn, we can solve a norm maximization problem

max ‖x− ξ‖ subject to x ∈ Ck. (3.27)

In fact, if we denote the maximum value of this problem by ρ(Ck, ξ), then we can represent

the set of all balls containing Ck as

{B(ξ, τ) : τ ≥ ρ(Ck, ξ), ξ ∈ Rn},

and Pk = PS(Ck) consists of the spherical quadratic functions p(·; ξ, τ) (ξ ∈ Rn, τ ≥

ρ(Ck, ξ) such that

p(x; ξ, τ) = (x− ξ)T (x− ξ)− τ 2 for ∀x ∈ Rn.

We can also observe from the argument in Section 3.2 that among the spherical quadratic

functions in PS(Ck), only the supporting spherical quadratic functions p(·; ξ, ρ(Ck, ξ)) (ξ ∈

Rn) are relevant in constructing the next iterate Ck+1 = F (Ck,PF ∪ P
S(Ck)).

In the Rank-2-SDP and the Rank-2-SILP Models, we have assumed that the maximum

value α(d, Ck) of the linear function dT x over x ∈ Ck is available for every d ∈ D. From

the practical point of view, the latter assumption on the Rank-2-SDP and the Rank-2-

SILP Models looks much weaker than the former assumption on the Spherical-SDP Model

CHAPTER 3. COMPLEXITY ANALYSIS 45

because a maximization of a linear function dT x over Ck is a convex program while the

norm maximization problem (3.27) is a nonconvex program. But the latter assumption

still requires to know the maximum value α(d, Ck) for ∀d in the set D consisting of in-

finitely many directions, so that these models are not implementable yet. As we showed

discretized-localized SCRMs in Chapter 2, Kojima and Tunçel [33] proposed discretization

and localization techniques to implement the Rank-2-SDP and the Rank-2-SILP Models.

Moreover, Takeda, Dai, Fukuda and Kojima [62] reported numerical results on practical

versions of the Rank-2-SILP Model. We will show the practical versions in Chapter 4.

(B) In Section 3.3, we have focused on the Rank-2-SILP Model and diverted its complexity

analysis to the Rank-2-SDP Model since the SDP relaxation is at least as tight as the semi-

infinite LP relaxation. But this is somewhat loose. In particular, we should mention one

important difference between the upper bounds required to attain an ε-convex-relaxation of

F in Theorems 3.3.4 and 3.2.3: the upper bound in Theorems 3.3.4 depends on the nonlin-

earity νnl(PF) of PF , while the upper bound in Theorem 3.2.3 depends on the nonconvexity

νnc(PF) but not on the nonlinearity νnl. This difference is critical when all the quadratic

functions are convex but nonlinear. Here we state a complexity analysis on the Rank-2-SDP

Model which leads to an upper bound depending on the nonconvexity νnc of PF but not on

the nonlinearity νnl of PF .

Define κ̄, θ̄ and δ as

κ̄ =





8

π
if νnc ≤

π ψ

32nη diam(C0)
,

ψ

4nη νnc diam(C0)
otherwise,

θ̄ =





π

8
if νnc ≤

2ψ

πnη diam(C0)
,

ψ

4nη νnc diam(C0)
otherwise,

δ̄ = 1− κ̄θ̄.

By definition, we see that κ̄ ≥ 0, 1 ≥ δ̄ ≥ 0 and (κ̄ + θ̄)νnc ≤
ψ

2nη diam(C0)
. It is easily

seen that the assertion of Lemma 3.3.2 remains valid with the definition above. The proof

is quite similar except replacing the quadratic function g(·) in (3.24) by

g(x) = νnc

n∑

i=1

g+
ii (x) for ∀x ∈ Rn.

By using similar arguments as in Lemma 3.3.3, Theorem 3.3.4 and their proofs, we conse-

quently obtain the following result: Assume (3.8) as in Corollary 3.1.2 and diam(F) > 0.

CHAPTER 3. COMPLEXITY ANALYSIS 46

Define

k∗ =





1 if νnc ≤
π ε2

256 n νlip diam(C0)3
,




(
32 n νlip νnc diam(C0)

3

ε2

)2

ln
8 νlip diam(C0)

2

ε diam(F)




otherwise.

If k ≥ k∗, then Ck ⊂ c.hull(F (ε)).

Note that now the bound k∗ is proportional to the square of the nonconvexity νnc of PF ,

and also that k∗ = 1 when quadratic functions in PF are almost convex.

Chapter 4

Practical Algorithms and Their
Implementations

For any given small value ε > 0, a discretized-localized SCRM (successive convex relaxation

method) generates an ε-approximation of the maximum objective function value if it includes

appropriately organized discretization and localization procedures. This is the claim of The-

orem 2.3.3 in Chapter 2. However, the details of discretization and localization have not

been studied, and the effect of specifically chosen discretization and localization procedures

on the efficiency of a SCRM is not clear. Focusing on the discretized-localized version of the

successive SDP (abbreviated by DLSSDP) relaxation method and the discretized-localized

version of successive semi-infinite LP (abbreviated by DLSSILP) relaxation method, we

propose implementable algorithms and study the behavior of the algorithms through com-

putational experiments. Our numerical results demonstrate that the proposed DLSSILP

algorithm generates relatively good upper bounds for the maximum objective function value

for most test problems. It produces a better approximation when compared with one ap-

plication of the SDP such as RLT-SDP (2.21), and semi-infinite LP relaxations such as

RLT-LP (2.18). See Section 2.4.2 for the problems RLT-SDP and RLT-LP.

4.1 Practical Successive Convex Relaxation Methods

For arbitrarily given ε > 0 and κ > 0, there exists δ > 0 such that if we take a δ-net D2

of D(c, κ), the discretized-localized SCRM generates an ε-approximation of the maximum

objective function value for QOP (1.2) within finite iterations. This has been shown in

Theorem 2.3.3. However, no specific result on the relations between ε > 0, κ > 0 and

δ > 0 has been clarified. What we know is that in order to obtain an ε-approximation of the

optimum value with small ε > 0, we have to choose a δ-net with sufficiently small δ > 0 for a

fixed κ > 0. When κ is fixed, a δ-net with a smaller δ contains more vectors. Consequently,

the number of linear constraints of each Ck and the number of SDPs or LPs to be solved

will increase as ε becomes small.

47

CHAPTER 4. ALGORITHMS AND THEIR IMPLEMENTATIONS 48

The primary goal of this research is to study efficient implementations of the DLSSDP

and DLSSILP relaxation methods. Concerning implementations, some issues have to be

addressed. (a) How large neighborhood should we take in the objective direction c so that

a better upper bound for the maximum objective function value can be achieved? (b) How

many direction vectors should be included in a δ-net? (c) How do we distribute them?

In this section, we discuss these issues, and present practical versions of the DLSSDP

and DLSSILP relaxation methods.

4.1.1 Choices of δ-nets

In their papers [32, 33], Kojima and Tunçel presented a certain δ-net consisting of finitely

many direction vectors, which was used for the proof of the global convergence of their

SCRMs. We use some of those vectors as a primary choice for our δ-net.

For ∀θ ∈ [0, π/2] and the coefficient vector c of the linear objective function of QOP

(1.2), define
bi(θ) ≡ (c cos θ + ei sin θ)/‖c cos θ + ei sin θ‖,
b̄i(θ) ≡ (c cos θ − ei sin θ)/‖c cos θ − ei sin θ‖,

(i = 1, 2, . . . , n)





(4.1)

D(θ) ≡ {c, bi(θ), b̄i(θ) (i = 1, 2, . . . , n)}. (4.2)

Then bi(θ), b̄i(θ) ∈ D and D(θ) ⊆ D. The distance of any pair of vectors from D(θ) is

determined by the value of θ. Define

κ ≡ max{‖d− c‖ | d ∈ D(θ)}

and

δ ≡ max
d∈D(c,κ)

min
d
′

∈D(θ)

‖d− d′‖.

Then the set D(θ) is a δ-net of D(c, κ). By changing the value of θ, we obtain different

values of κ and δ. The discretized-localized procedure introduced in Section 2.3.2 takes the

function-set Pk = PL(C0, D1) ∪ P
2(Ck, D1, D2) with D1 = ±I,D2 = (a δ-net of D(c, κ)),

i.e.,

Pk = { s̀f(x;C0,d1) : d1 ∈ ±I} ∪ {r2sf(x;Ck,d1,d2) : d1 ∈ ±I, d2 ∈ D(θ)}
= {dT

1 x− α(C0,d1) : d1 ∈ ±I} ∪
{−(dT

1 x− α(C0,d1))(d
T
2 x− α(Ck,d2)) : d1 ∈ ±I, d2 ∈ D(θ)},





(4.3)

in Algorithm 2.2.4 (or Algorithm 2.2.5).

We include the vector c in the δ-net, since when the value ζk = α(Ck, c) is updated, the

corresponding rank-2 quadratic constraints in Pk:

−(dT
1 x− α(C0,d1))(c

T x− α(Ck, c)) ≤ 0, (∀d1 ∈ ±I)

CHAPTER 4. ALGORITHMS AND THEIR IMPLEMENTATIONS 49

are expected to cut off some unnecessary area so that a better convex relaxation of F in a

neighborhood of the objective direction c might be obtained. These constraints also force

{ζk (k = 0, 1, 2, ...,)} to be a nonincreasing sequence, which correspond to upper bounds of

QOP(1.2).

It should be noted that with κ and θ defined above, we are not guaranteed to obtain

an ε-approximation of the maximum objective function value after a reasonable number of

iterations. One needs to find a δ-net which is sufficiently fine so that the ε-approximation

of the maximum objective function value can be obtained in a finite number of iterations.

However, no previous information is available on how to make a refinement of the δ-nets.

Since Algorithm 2.2.4 (or Algorithm 2.2.5) solves SDPs (or LPs) for many times, increasing

the number of vectors in a δ-net will result in a substantial increase in the amount of work

spent on solving SDPs (or LPs) due to the increase of the size of constraints as well as to

the increase of the number of SDPs (or LPs) to be solved. More precisely, if we take D(θ)

as D2, the number of quadratic functions in Pk will be as many as O(n2). Although the

refinement may lead to the decrease in iterations of the algorithm for obtaining a solution

with a previously given precision, it still seems reasonable to use a δ-net with cardinality of

O(n).

A possible refinement of a δ-net D(θ) with cardinality O(n) could be constructed as

follows. For a given θ, take θ′ = θ/2, and generate vectors bi(θ
′) and b̄i(θ

′) (i = 1, 2, . . . , n)

as above. Add those vectors to the set D(θ), then the new set is also a δ-net of D(c, κ).

Actually it is a δ′-net of D(c, κ) for some δ′ < δ. By our preliminary testing, the refinement

did make an improvement on the quality of the approximation. However, the effect is

relatively small and the computation time increases significantly. Therefore we shall use

D2 ≡ D(θ) as the δ-net of D(c, κ) hereafter for our implementation of the algorithm. Note

that the normalization of the vectors c, bi(θ), b̄i(θ) is only for the convenience of the proof

of Theorem 2.3.3. It is not necessary to do this when we implement the algorithm.

Recall that to construct Pk = PL(C0, D1)∪P
2(Ck, D1, D2) in Step 2 of Algorithm 2.2.4

(or Algorithm 2.2.5) with the current sets D1 and D2, we have to solve (2n + 1) SDPs (or

LPs). The number of supporting functions in the set Pk is 2n + (2n)(2n + 1), where the

first term is the number of linear supporting functions of PL(Ck, D1). From our preliminary

testing, it turns out that the values

α(Ck,d1) = max{dT
1 x : x ∈ Ck} (∀d1 ∈ ±I) (4.4)

change very little when Ck is updated. In addition to the statement of Remark 2.3.4, this

is another reason to adopt PL(C0, D1) instead of PL(Ck, D1), and use α(C0,d1) (∀d1 ∈ D1)

and α(Ck,d2) (∀d2 ∈ D2) for rank-2 quadratic supporting functions at each iteration. This

will save a considerable amount of work on solving (4.4).

We also change the distribution of the vectors in the δ-net while running the algorithm.

The vectors in the δ-net are replaced when the function value reaches a plateau. This is

carried out by decreasing the value of θ and replacing old bi(θ), b̄i(θ) (i = 1, 2, . . . , n) in

the δ-net with those corresponding to the new θ. But this procedure will be only repeated

CHAPTER 4. ALGORITHMS AND THEIR IMPLEMENTATIONS 50

for K times till θ becomes a prescribed small value, since getting a better approximation

by any further decrease of θ seems to be unlikely then. The rate of decreasing of θ will be

determined by a sequence {σ`}K
`=0 (1 = σ0 > σ1 > · · · > σK), i.e., if the initial value of θ is

θ0, then at the `th (` = 1, ..., K) replacement, θ is set to be equal to σ`θ0.

4.1.2 Algorithms

With the δ-nets described in the previous subsection, we are ready to give a practical version

of Algorithms DLSSDP and DLSSILP.

Algorithm 4.1.1. (DLSSDP relaxation method)

Input : an integer K > 0, real values θ0 > 0, ε1 > 0, ε2 > 0, and a sequence {σ`}K
`=0.

Output : a value ζ̄ .

Step 0: Let D1 = ±I, D2 = D(θ0). Let ζ−1 = +∞.

Step 1: Compute α(C0,d) = max{dT x : x ∈ C0} (∀d ∈ D1 ∪D2), let k = 0, ` = 0.

Step 2: If Ck = ∅, let ζ̄ = −∞ and stop. Otherwise compute ζk = max{cT x : x ∈ Ck}.

If ` = K and
ζk−1 − ζk

max{|ζk|, ε2}
≤ σKε1, let ζ̄ = ζk and stop.

Step 3: If
ζk−1 − ζk

max{|ζk|, ε2}
≤ σ`ε1, then let ` = ` + 1, θ` = σ`θ0, and replace the δ-net D2

by the set of new vectors D(θ`).

Step 4: Compute α(Ck,d2) = max{dT
2 x : x ∈ Ck} for ∀d2 ∈ D2.

Step 5: Let Pk = PL(C0, D1) ∪ P
2(Ck, D1, D2).

Step 6: Let

Ck+1 = F̂ (C0,PF ∪ Pk)

≡





x ∈ C0 :
∃X ∈ Sn such that

(
1 xT

x X

)
∈ S1+n

+ and

γ + 2qT x + Q •X ≤ 0 (∀qf(·; γ, q,Q) ∈ PF ∪ Pk)




.

Step 7: Let k = k + 1, and go to Step 2.

Algorithm 4.1.2. (DLSSILP relaxation method)

Input : an integer K > 0, real values θ0 > 0, ε1 > 0, ε2 > 0, and a sequence {σ`}
K
`=0.

Output : a value ζ̄ .

CHAPTER 4. ALGORITHMS AND THEIR IMPLEMENTATIONS 51

Step 0, 1, 2, . . . , 5: The same as Steps 0, 1, 2 . . . , 5 of Algorithm 4.1.1, respectively.

Step 6: Let

Ck+1 = F̂
L
(C0,PF ∪ Pk)

≡

{
x ∈ C0 :

∃X ∈ Sn such that
γ + 2qT x + Q •X ≤ 0 (∀qf(·; γ, q,Q) ∈ PF ∪ Pk)

}
.

Step 7: The same as Step 7 of Algorithm 4.1.1.

Remark 4.1.3. In Step 4 of Algorithm 4.1.2, we solve (2n+ 1) LPs with the same feasible

region Ck. It is not necessary to solve each of them from scratch. After the first one is

solved, solutions of subsequent LPs could be found by the standard reoptimization procedure

developed for sensitivity study of LPs. This contributes a great deal to the efficiency of the

implementation.

Remark 4.1.4. Algorithm 4.1.1 (or Algorithm 4.1.2) generates a sequence of convex re-

laxations Ck ⊆ C0 of F (k = 1, 2, . . .) and a sequence of real numbers ζk (k = 1, 2, . . .)

satisfying

C0 ⊇ Ck ⊇ Ck+1 ⊇ F (k = 1, 2, . . .),

ζk ≥ ζk+1 ≥ ζ∗ ≡ sup{cT x : x ∈ F} (k = 1, 2, . . .).

If in addition we take D2 = D, then Ck and ζk converge to the convex hull of F and ζ∗,

respectively. See Section 2.3 for more details on the convergence of Ck and ζk.

4.1.3 Other Versions of the Algorithms

As we mentioned before, Pk is not a quadratic representation of Ck in general. To save the

amount of work in each iteration, we could even use less quadratic functions; for example,

we could take

P̄
2
(Ck, D1, D2) =





−(±eT
i x− α(C0,±ei))(bj(θ)

T x− α(Ck, bj(θ))),
−(±eT

i x− α(C0,±ei))(b̄j(θ)
T x− α(Ck, b̄j(θ))),

−(±eT
i x− α(C0,±ei))(c

T x− α(Ck, c)),
(1 ≤ ∀i ≤ ∀j ≤ n)




.

The number of quadratic supporting functions in P̄
2
(Ck, D1, D2) is 2n(n + 2), which is

almost half of that in P2(Ck, D1, D2). Replacing P2(Ck, D1, D2) with P̄
2
(Ck, D1, D2) in

Pk, we obtain other versions of Algorithms DLSSDP and DLSSILP, which we call Algo-

rithms DLSSDP’ and DLSSILP’, respectively. Algorithms DLSSDP’ and DLSSILP’ may

be regarded as more practical versions, since they further overcome a rapid explosion in the

number of convex programs to be solved at each iteration.

CHAPTER 4. ALGORITHMS AND THEIR IMPLEMENTATIONS 52

4.2 Computational Experiments on QOPs

In this section, we report computational results of Algorithms 4.1.1 and 4.1.2 for quadratic

optimization test problems. We use CPLEX (Ver 6.5) as LP solver and SDPA (Ver. 5.00)

[21] as SDP solver. The program was coded in C++ and was run on a Digital Alpha

Workstation (CPU Alpha 2116-400 MHz with 512 MB of memory).

4.2.1 Test Problems

Our set of test problems for the computational study consists of six types of problems from

literature.

(a) Minimization of a linear function over linear and quadratic constraints (LQCP);

(b) Minimization of a concave quadratic function with linear constraints (CQP);

(c) Bilinear programs (BLP);

(d) Mixed quadratic 0-1 integer programs (MQI);

(e) Sum of linear fractional programs (SLFP);

(f) Bilevel quadratic programs (BLevel).

The transformation from problems (a)-(c) to QOP (1.2) is straightforward. Concerning

problems (d)-(f), we already presented their transformed quadratic problems in Section 2.1.

We suppose that those problems include lower and upper bounding constraints for

each variable. Unless we impose box constraints on each variable, the Reformulation-

Linealization Technique compared with our methods in numerical experiments, may fail

due to the unboundness of variables. Therefore it is necessary to derive lower and upper

bounds for all variables before we start the algorithms. We have preprocessed the test

problems to obtain box constraints in the case they are not given by the original data.

If the original problem has a quadratic objective function g(x), an artificial variable t

is introduced to replace the quadratic function, and the original problem is transformed

into QOP (1.2). The bounds for the new variable t is calculated as follows. Suppose that

li and ui such that li ≤ xi ≤ ui (i = 1, 2, . . . , n) are given in the original problem. The

quadratic function g(x) contains nonlinear terms xixj . Values of min{liui, liuj, ljui, ljuj}

and max{liui, liuj, ljui, ljuj} can be used as lower and upper bounds for those nonlinear

terms, respectively. Then lower and upper bounds for t can be generated by using bounds

for the nonlinear terms and those for the original variables.

In problem (e), linear fractional terms appear in a objective function. The transformation

of the problem (e) into QOP (1.2) uses an artificial variable, say t, to replace each linear

CHAPTER 4. ALGORITHMS AND THEIR IMPLEMENTATIONS 53

fractional term, say g(x). See Example 2.1.2 of Section 2.1. As an upper bound for g(x),

it is sufficient to take the ratio of the maximum value of the numerator to the minimum

value of the denominator. Similarly, the ratio of the minimum value of the numerator to

the maximum value of the denominator can serve as a lower bound for g(x). Since both the

denominator and the numerator are linear functions of the original variables, the maximum

and the minimum values of the functions are not difficult to be calculated if box constraints

of the original variables are given.

The only exception is problems of type (f). For those problems, since the computation of

upper bounds for the Lagrange multipliers ui (i = 1, 2, . . .) induced from the Karush-Kuhn-

Tucker optimality condition is not trivial, we only use a sufficiently large value (ui = 1000)

as an upper bound for each ui. In Chapter 5, we will focus on bilevel quadratic problems

(f) and introduce a technique to avoid such a priori explicit bound ui = 1000.

Here we denote QOP (1.2) as

max cT x subject to x ∈ F, (4.5)

where

F ≡

{
x ∈ Rn :

γi + 2qT
i x + xT Qix ≤ 0, i = 1, . . . , m

lj ≤ xj ≤ uj, j = 1, . . . , n

}
. (4.6)

Table 4.1 gives the test problems that we used in computational study.

4.2.2 Numerical Results

For the comparison, we implemented Algorithm DLSSILP with two different PF and Pk,

and two other typical algorithms. The latter two algorithms apply the Reformulation-

Linealization Technique (RLT) [55, 57] for a quadratic problem (4.5) and reformulate a new

quadratic problem with additional constraints and variables. Then, take the SDP relaxation

or the LP relxation for the reformulated problem. Concerning the reformulation with RLT,

see problems RLT-SDP (2.21) and RLT-LP (2.18) of Section 2.4.2. We call these four

algorithms DLSSILP, DLSSILP+RLT, RLT-SDP and RLT-LP, respectively.

Input-data PF for QOP: The input data PF for the three algorithms DLSSILP+RLT,

RLT-SDP and RLT-LP are identical. In below, we designate the input data for Algorithm

DLSSILP by DataDLSSILP, and for the other three algorithms by DataRLT. We construct

the input data DataDLSSILP from (4.6) as

PF ≡

{
γi + 2qT

i x + xT Qix, i = 1, . . . , m
lj − xj , −uj + xj , j = 1, . . . , n

}
.

The input data DataRLT, which is identical for DLSSILP+RLT, RLT-SDP and RLT-

LP, is generated as follows. On the idea of RLT explained in Section 2.4.2, we generate

quadratic constraints by taking pairwise products for all linear constraints of QOP (4.5).

CHAPTER 4. ALGORITHMS AND THEIR IMPLEMENTATIONS 54

Table 4.1: The test problems

Problem Type Source n m #QP

LQCP1 (a) [17] 3 3 1
LQCP2 (a) [17] 7 7 3
LQCP3 (a) [17] 8 6 3
LQCP4 (a) [17] 6 7 7
LQCP5 (a) [17] 9 10 4
LQCP6 (a) [69] 7 7 3
LQCP7 (a) [69] 2 4 2
LQCP8 (a) [15, 61] 3 3 2
LQCP9 (a) [15, 61] 10 11 4
CQP1 (b) [17] 7 3 1
CQP2 (b) [17] 11 6 1
CQP3 (b) [17] 6 2 1
CQP4 (b) [17] 21 11 1
CQP5 (b) [17] 14 10 1
CQP6 (b) [17] 7 6 1
CQP7 (b) [17] 11 12 1
CQP8 (b) [69] 5 7 1
BLP1 (c) [48] 11 11 1
BLP2 (c) [4] 11 14 1
BLP3 (c) [4] 11 11 1
MQI1 (d) [49] 5 11 7
MQI2 (d) [25] 6 14 8
SLFP1 (e) [16] 4 4 2
SLFP2 (e) [16] 5 7 2
SLEP3 (e) [16] 4 4 2
BLevel1 (f) [70] 7 16 10
BLevel2 (f) [70] 7 14 9
BLevel3 (f) [70] 9 15 9
BLevel4 (f) [70] 6 11 7
BLevel5 (f) [70] 10 19 12

Legend : n and m denote the number of variables and the
number of constraints (not including box constraints) in the
transformed QOP, respectively. The notation #QP denotes
the number of quadratic constraints. The second column gives
the type of problems.

CHAPTER 4. ALGORITHMS AND THEIR IMPLEMENTATIONS 55

Table 4.2: Parameters for implementations

parameter value

ε1 0.001
ε2 1.0
θ0 90◦

σ0 1
σ1 8/9
σ`(` ≥ 2) σ1 ∗ (ratio θ)`−1

ratio θ 0.5
K 3

Those new and original quadratic constraints are considered as input data for the three

algorithms.

An interesting observation is that if Algorithm DLSSILP is started with θ = 90◦,

it actually generates quadratic constraints which correspond to those from the pairwise

products of lower and upper bound constraints. More precisely, when θ = 90◦, vectors

bi, b̄i (i = 1, 2, . . . , n) in the δ-net are corresponding to unit vectors ei,−ei (i = 1, 2, . . . , n),

and the values α(ei, C0),−α(−ei, C0) (i = 1, 2, . . . , n) are upper and lower bounds for the

variable xi (i = 1, 2, . . . , n), respectively. The set P2(Ck, D1, D2) constructed by Algorithm

DLSSILP contains all quadratic functions from the pairwise products of lower and upper

bound constraints. Therefore if the feasible region of the original problem is given only by

those box constraints, then Sherali and Tuncbilek’s method is identical to the first step of

our algorithm starting with θ = 90◦.

Parameters: The parameters used by the algorithms are given in Table 4.2. We start

the algorithm with θ = 90◦, since we observed from our preliminary numerical experiments

that it generates better upper bounds for most of the test problems. When we replace a

δ-net, we decrease θ by a factor of 8/9 at the first time, and then by a factor of 1/2 for the

other replacements (` ≥ 2). This was also decided empirically.

Computational Results : We report numerical results for four algorithms in Table 4.4.

The legends are listed in Table 4.3. Statistical results of relative errors of the four algorithms

are summarized in Table 4.5. Each number in columns 2-5 of Table 4.5 indicates the

number of cases where relative errors of maximum objective function values are within the

corresponding range. The last column gives the number of cases successfully solved by each

algorithm. Since the SDP relaxation could only solve 2/3 of the cases, we only compare the

results of the first three algorithms. The failure of the SDP relaxation may be caused by

the numerical instability due to the pairwise products of the linear constraints, since they

could result in very large or very small coefficients at the same time.

CHAPTER 4. ALGORITHMS AND THEIR IMPLEMENTATIONS 56

Table 4.3: Legends

Problem : the type of problem;
DLSSILP : the algorithm using PL(C0, D1) ∪ P

2(Ck, D1, D2)
as Pk and DataDLSSILP as PF ;

DLSSILP+RLT : the algorithm using PL(C0, D1) ∪ P
2(Ck, D1, D2)

as Pk and DataRLT as PF ;
RLT-LP : the LP relaxation algorithm with input DataRLT;
RLT-SDP : the SDP relaxation algorithm with input DataRLT;

R.error : the relative error of a solution, i.e.,
|ζ̄ − ζ∗|

max{|ζ∗|, ε2}
, where ζ∗ is the

maximum or best known objective function value, and ζ̄ the upper
bound obtained by each algorithm for ζ∗;

cpu : the cpu time in seconds;
iter. : the number of iterations (Steps 2- 7) of Algorithm 4.1.2.

Table 4.5 shows that on average, Algorithm DLSSILP+RLT performed best in generat-

ing good upper bounds for the test problems, and Algorithm RLT-LP generated less good

ones. We also observed that Algorithm DLSSILP+RLT reported 24 cases with relative

errors less than 0.01, and Algorithm DLSSILP reported 21 cases. We could conclude that

Algorithm DLSSILP is also competent to obtain good upper bounds for the maximum ob-

jective function value. From the aspect of computing time, Algorithm RLT-LP needs much

less time, while Algorithm DLSSILP+RLT is more time-consuming on average. However,

there are a few exceptions. For example, comparing with Algorithm DLSSILP, Algorithm

DLSSILP+RLT produced a better solution for problem LQCP3 in less time. Another ob-

servation is that both of SSILP relaxation algorithms seem to be more capable of solving

difficult types of problems such as types (e) and (f) than Algorithm RLT-LP does.

Behavior of the algorithms : Experiments were conducted in order to see how the other

factors affect the behavior of the algorithms. The following three factors were considered :

(i) different quadratic representation Pk’s of Ck; (ii) δ-nets without replacement; and (iii)

the number of replacements of the δ-net. We picked up one specific problem with relatively

large numbers of variables and constraints from each group of the problems in Table 4.1 for

the analysis.

(i) As we discussed in Section 4.1.3, the set P̄
2
(Ck, D1, D2) could be chosen as an al-

ternative to the set P2(Ck, D1, D2) to represent Pk in the algorithm. Algorithm DLSSILP’

uses P̄
2
(Ck, D1, D2) instead of P2(Ck, D1, D2) in the representation of Pk, and all param-

eters were fixed as the same values as in Algorithm DLSSILP. The numerical results of

these two algorithms are presented in Tables 4.6-4.7. Algorithm DLSSILP is slightly better

than Algorithm DLSSILP’ in terms of generating good upper bounds. But the former takes

more time. There exists almost no difference between the algorithms DLSSILP+RLT and

CHAPTER 4. ALGORITHMS AND THEIR IMPLEMENTATIONS 57

Table 4.4: Computational results of four algorithms

DLSSILP DLSSILP+RLT RLT-LP RLT-SDP
Problem

R.error cpu iter. R.error cpu iter. R.error cpu R.error cpu

LQCP1 4.68e-4 0.53 46 3.70e-4 0.43 30 4.23e-1 0.00 4.23e-1 0.48
LQCP2 1.02e-4 0.38 7 0.00e+0 0.52 5 1.83e-16 0.02 7.93e-6 16.93
LQCP3 2.94e-1 165.78 289 2.79e-2 35.18 51 5.20e-1 0.03 ——– —–
LQCP4 1.07e-3 0.25 6 9.70e-4 0.38 6 4.42e-3 0.02 ——– —–
LQCP5 1.56e-15 3.87 6 1.28e-15 7.13 6 2.50e-1 0.03 ——– —–
LQCP6 1.02e-4 0.47 8 4.77e-15 0.35 5 3.67e-16 0.02 9.39e-5 17.08
LQCP7 2.08e-2 0.13 27 1.35e-2 0.17 25 6.07e-2 0.00 7.56e-5 0.20
LQCP8 3.64e-3 0.25 35 1.93e-3 0.30 28 5.79e-1 0.00 5.79e-1 0.35
LQCP9 1.28e-15 3.85 7 1.85e-15 31.83 6 2.50e-1 0.05 ——– —–
CQP1 9.34e-16 0.20 5 0.00e+0 0.33 5 0.00e+0 0.03 1.66e-6 7.02
CQP2 1.18e-3 9.22 20 5.47e-15 5.58 6 2.12e-2 0.20 2.18e-2 80.07
CQP3 4.05e-2 2.63 37 2.06e-2 2.45 28 6.82e-2 0.02 6.82e-2 8.85
CQP4 4.26e-2 352.73 63 ——– —– – 2.08e-4 6.40 2.80e-3 1931.52
CQP5 0.00e+0 3.57 5 5.92e-16 2.97 5 2.37e-16 0.15 3.26e-6 243.65
CQP6 3.23e-16 0.33 5 1.61e-16 1.18 5 0.00e+0 0.05 2.00e-5 15.43
CQP7 4.03e-4 1.42 7 1.18e-7 9.52 5 1.18e-7 0.53 1.57e-5 199.42
CQP8 2.73e-16 0.15 6 0.00e+0 0.27 5 0.00e+0 0.02 2.96e-6 7.30
BLP1 8.25e-7 1.05 6 4.18e-6 4.38 5 4.18e-6 0.15 1.72e-4 178.22
BLP2 1.09e-3 9.08 15 5.14e-6 74.02 5 5.14e-6 1.03 1.24e-1 240.27
BLP3 6.38e-6 1.07 6 1.37e-6 4.17 5 1.37e-6 0.15 1.25e-4 142.53
MQI1 2.02e-16 0.11 5 0.00e+0 0.18 5 2.02-16 0.03 1.66e-6 4.15
MQI2 6.92e-2 10.17 116 6.34e-16 1.92 8 3.33e-1 0.02 6.74e-6 13.85
SLFP1 1.78e-16 0.18 9 3.04e-8 0.23 9 2.92e-1 0.00 ——– —–
SLFP2 9.61e-4 0.57 16 9.76e-5 1.30 14 3.54e-1 0.02 3.54e-1 4.68
SLFP3 3.16e-2 1.23 44 2.96e-2 1.48 40 2.58e-1 0.00 2.58e-1 1.08
BLevel1 5.74e-2 73.43 509 3.57e-8 0.73 5 3.57e-8 0.03 ——– —–
BLevel2 2.95e-1 58.52 382 3.37e-3 23.95 72 7.06e-1 0.03 ——– —–
BLevel3 2.23e-4 1.78 15 1.65e-12 2.72 7 2.22e-1 0.05 ——– —–
BLevel4 1.65e-2 0.90 27 1.38e-2 1.27 22 1.00e+0 0.02 ——– —–
BLevel5 6.76e-3 52.10 80 1.59e-4 32.65 23 1.16e-1 0.05 ——– —–

The empty entries show that the algorithm could not obtain solutions.

CHAPTER 4. ALGORITHMS AND THEIR IMPLEMENTATIONS 58

Table 4.5: Statistical results of relative errors

range of relative errors
Algorithm

[0, 0.01) [0.01, 0.1) [0.1, 1) [1,+∞)
#. cases solved

DLSSILP 21 7 2 0 30
DLSSILP+RLT 24 5 0 0 29
RLT-LP 14 3 12 1 30
RLT-SDP 13 2 5 0 20

DLSSILP’+RLT as far as the quality of the solution is concerned. But the former consumes

more time in most cases.

(ii) Using Problem CQP3 as an example, we see the behavior of some variants of Al-

gorithm DLSSILP where each δ-net was fixed (i.e., θ of the set D(θ) defined by (4.2) was

fixed) throughout the execution of the algorithm. The values of θ for the fixed δ-nets were

set as 10◦, 40◦ and 80◦, respectively. In Figure 4.1, CQP3-10, CQP3-40 and CQP3-80 are

corresponding to each such case, respectively. CQP3-replace indicates the result where the

δ-net was replaced. It is obvious from the figure that the replacement of the δ-net is effective

to reduce the relative error quickly.

(iii) Table 4.8 shows the results of Algorithm DLSSILP when different numbers of re-

placements, e.g. K = 3, 5, were selected. It seems that we could obtain relatively good

upper bounds when K = 3. This is also confirmed from Figure 4.1, since the drastic decrease

of the relative error occurs at an early stage of the execution of the algorithm.

In this chapter, we presented a practically implementable version of the discretized-

localized SSILP relaxation method [33] proposed by Kojima and Tunçel. We studied the

behavior of the method through computational experiments. It could generate relatively

good upper bounds for the maximum objective function value for most of the test problems.

Several issues are left for further study. The most challenging problem is to give theo-

retical analysis for the convergence rate of the algorithm. As a practical implementation,

attempting different types of δ-nets by exploring special structures of problems is important

not only in making the method more efficient but also in obtaining information for the the-

oretical study. Moreover, suitable data structures which enable to solve problems of large

size should be developed.

CHAPTER 4. ALGORITHMS AND THEIR IMPLEMENTATIONS 59

Table 4.6: Algorithms DLSSILP and DLSSILP’

DLSSILP DLSSILP’
Problem

R.error cpu iter. R.error cpu iter.

LQCP3 2.94e-1 165.78 289 3.37e-1 115.65 436
CQP4 4.26e-2 352.73 63 1.14e-1 61.45 33
BLP2 1.09e-3 9.08 15 4.92e-3 4.70 19
MQI2 6.92e-2 10.17 116 1.36e-1 4.20 99
SLFP3 3.16e-2 1.23 44 3.92e-2 0.60 34
BLevel2 2.95e-1 58.52 382 8.82e-1 1.43 25

Table 4.7: Algorithms DLSSILP+RLT and DLSSILP’+RLT

DLSSILP+RLT DLSSILP’+RLT
Problem

R.error cpu iter. R.error cpu iter.

LQCP3 2.78e-2 35.18 51 3.59e-2 22.20 51
CQP4 ——– —– – ——– —– –
BLP2 5.14e-6 74.02 5 5.14e-6 39.83 5
MQI2 6.34e-16 1.92 8 2.54e-16 1.32 9
SLFP3 2.96e-2 1.48 40 4.36e-2 0.73 29
BLevel2 3.37e-3 23.95 72 6.76e-2 28.75 77

The empty entries show that the algorithm could not
obtain solutions.

CHAPTER 4. ALGORITHMS AND THEIR IMPLEMENTATIONS 60

Figure 4.1: Behavior of Algorithm DLSSILP with fixed and replaced δ-nets for problem
CQP3

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0 20 40 60 80 100

re
la

tiv
e

er
ro

r

iteration

"CQP3-replace"
"CQP3-80"
"CQP3-40"
"CQP3-10"

Table 4.8: Different numbers of replacements for the δ-net

DLSSILP (K= 3) DLSSILP (K= 5)
Problem

R.error cpu iter. R.error cpu iter.

LQCP3 2.94e-1 166.72 289 2.67e-1 236.65 363
CQP3 4.05e-2 2.85 37 3.84e-2 4.00 53
CQP4 4.26e-2 343.35 63 3.99e-2 551.02 91
BLP2 1.09e-3 8.97 15 1.02e-3 11.10 17
MQI2 6.92e-2 10.28 116 5.02e-2 15.18 181
SLFP3 3.30e-2 1.37 45 1.88e-2 2.42 83
BLevel2 2.95e-1 57.00 382 2.95e-1 57.20 384

Chapter 5

An Application of Successive Convex
Relaxation Methods to Bilevel
Quadratic Optimization Problems

So far we have handled the most general class of QOPs (quadratic optimization problems)

of the form (1.2). In this chapter, we focus on QOPs with additional special structure,

induced from some class of bilevel programming (abbreviated by BP), and propose special

versions of SCRMs (successive convex relaxation methods) to such QOPs.

BPs belong to a class of nonconvex global optimization problems. It arises where de-

cisions are made in a two-level hierarchical order and each decision maker has no direct

control or influence upon the decision of the other, but actions taken by one decision maker

affect returns from the other. Such problems can be formulated as two levels of nested

mathematical programs as follows:

max
x

F (x,y)

subject to y ∈ argmin
y
{G(x,y) : g(x,y) ≤ 0},

f (x,y) ≤ 0,

w =

(
x

y

)
∈ G0,





(5.1)

where g(x,y) : Rn → Rm1 , f (x,y) : Rn → Rm2 , G(x,y) : Rn → R, F (x,y) : Rn → R,

and G0 denotes a nonempty compact polyhedral subset of Rn. Given an action x at the

upper level, the lower level decision maker returns a minimizer y(x) of G(x,y) subject to the

constraints g(x,y) ≤ 0 to the upper level. As a whole, the upper level decision maker needs

to maximize his objective function F (x,y(x)) subject to the constraints f (x,y(x)) ≤ 0

and (x,y(x)) ∈ G0.

Applications of BPs are numerous; for example, (i) hierarchical decision making policy

problems in mixed economies, where policy makers at the top level influence the decisions

of private individuals and companies, (ii) network facility location with delivered price

61

CHAPTER 5. AN APPLICATION OF SCRMS TO BQOPS 62

competition, (iii) the Portland Aluminium Smelter in Victoria, Australia [41], aiming to

maximize the aluminium production while minimizing the main cost associated with the

production. See Vicente and Calamai [68] for a recent comprehensive review of the literature.

We call a BP lower-convex if the lower level objective function G(x,y) and constraint

functions gi(x,y) (i = 1, 2, . . . , m1) are all convex in y for each fixed value of x. Among the

BPs, lower-convex BPs have received most of the attention in the literature. The advantage

of dealing with lower-convex BPs is that under an appropriate constraint qualification,

the lower level problem can be replaced by its Karush-Kuhn-Tucker (KKT) optimality (or

equilibrium) condition to obtain an equivalent (one-level) mathematical program, a special

case of the Mathematical Program with Equilibrium Constraints (MPEC) which has been

studied intensively in recent years. See Luo, Pang and Ralph [36] for more details about

MPEC.

There are three important classes of lower-convex BPs, namely:

(i) linear BPs, where all functions involved are affine,

(ii) linear-quadratic BPs, where G(x,y) is convex quadratic and all remaining functions

are affine,

(iii) quadratic BPs, which differ from linear-quadratic BPs in that F (x,y) can also be a

quadratic function.

We propose new techniques for solving a more general class of BPs than the class (iii)

by allowing that some of gi(x,y) (i = 1, 2, . . . , m1) are convex quadratic functions and

some of fj(x,y) (j = 1, 2, . . . , m2) are (not necessarily convex) quadratic functions. We

could further weaken the assumption of quadratic functions to a wide class of nonlinear

functions according to the technique proposed by [30], but for simplicity of discussions, we

will restrict ourselves to bilevel quadratic optimization problems (abbreviated by BQOPs)

where all functions involved in BPs are linear or quadratic. In these cases, the application

of the KKT optimality condition to the lower level problem results in a one-level nonconvex

QOP including complementarity constraints. We further transform the QOP into a bounded

constraint QOP having a linear objective function in order to utilize SCRMs.

We adapt the discretized-localized SSDP (successive semidefinite programming) relax-

ation method and the discretized-localized SSILP (successive semi-infinite LP) relaxation

method to BQOPs, taking full advantage of a special structure of the transformed QOPs.

The main purpose of this chapter is to attain a relatively tight upper bound for the optimum

objective function value of the BQOP with reduced computational expense. In the next

section, we formally define a BQOP, and present its reformulation via the KKT optimal-

ity condition. In Section 5.2, we introduce two types of techniques exploiting the special

structure of the QOP transformed from a BQOP, and illustrate the techniques using a small

example. In Section 5.3, we report some numerical results, which show the effectiveness of

our proposed techniques.

CHAPTER 5. AN APPLICATION OF SCRMS TO BQOPS 63

5.1 Transformation into a QOP Formulation

Consider a bilevel quadratic optimization problem (BQOP) having a linear objective func-

tion at the upper level:

max
u

cT
1 v + cT

2 u

subject to v ∈ argmin
v
{g0(v,u) : gi(v,u) ≤ 0 (i = 1, . . . , m1)},

fj(v,u) ≤ 0 (j = 1, . . . , m2), w =

(
v

u

)
∈ G0.





(5.2)

where

v ∈ Rn1 : the lower level variable vector,

u ∈ Rn2 : the upper level variable vector,

n ≡ n1 + n2,

G0 : a nonempty compact polyhedral subset of Rn,

c1 ∈ Rn1 , c2 ∈ R
n2,

gi(·, ·), fj(·, ·) ∈ Q : a quadratic function on Rn

(i = 0, 1, . . . , m1, j = 1, 2, . . . , m2),

g(·, ·) =




g1(·, ·)
...

gm1(·, ·)


 : Rn → Rm1 ,

f (·, ·) =




f1(·, ·)
...

fm2(·, ·)


 : Rn → Rm2 .

If a given BQOP has a quadratic objective function at the upper level, we could transform

the problem into the form (5.2) above by adding a constraint “the objective function−t = 0”

and replacing the objective function by t. We impose the following condition on the BQOP

(5.2).

Condition 5.1.1.

(i) The quadratic function gi(·,u) is convex on Rn1×{u} for fixed u ∈ Rn2 (i = 0, . . . , m1).

(ii) If

m1∑

i=1

λi∇vgi(v,u) = 0, gi(v,u) ≤ 0, λigi(v,u) = 0, 0 ≤ λi (i = 1, . . . , m1),

fj(v,u) ≤ 0 (j = 1, . . . , m2), w =

(
v

u

)
∈ G0,

then λ = (λ1, . . . , λm1)
T = 0 (A strong version of the Mangasarian Fromovitz con-

straint qualification).

CHAPTER 5. AN APPLICATION OF SCRMS TO BQOPS 64

Applying the KKT optimality condition to the lower level convex problem of the BQOP

(5.2) under Condition 5.1.1, we can reduce the constraint

v ∈ argmin
v
{g0(v,u) : gi(v,u) ≤ 0 (i = 1, . . . , m1)}

to the constraint

∇vg0(v,u) +
m1∑

i=1

λi∇vgi(v,u) = 0,

gi(v,u) ≤ 0, λigi(v,u) = 0, 0 ≤ λi (i = 1, . . . , m1),

where λi denotes the Lagrange multiplier of the ith constraint gi(v,u) ≤ 0 (i = 1, . . . , m1).

Thus, introducing slack variables si ≥ 0 (i = 1, . . . , m1) for the quadratic inequality con-

straints gi(v,u) ≤ 0 (i = 1, . . . , m1), we can rewrite the BQOP (5.2) as a QOP

max
λ,s,w

cT
1 v + cT

2 u

subject to ∇vg0(v,u) +
m1∑

i=1

λi∇vgi(v,u) = 0,

gi(v,u) + si = 0, 0 ≤ si ≤ s̄i (i = 1, . . . , m1),

λisi = 0, 0 ≤ λi (i = 1, . . . , m1),

fj(v,u) ≤ 0 (j = 1, . . . , m2), w =

(
v

u

)
∈ G0.





(5.3)

Here s̄i (i = 1, 2, . . . , m1) denotes a positive number such that

s̄i ≥ max {si : gi(v,u) + si = 0, si ≥ 0, w ∈ G0} . (5.4)

Since G0 is a compact polyhedral set, such a finite positive number s̄i always exists. If

some inequality constraint gi(v,u) ≤ 0 (i ∈ {1, . . . , m1}) is linear, it is not necessary to

introduce the slack variable si since the complementarity constraint λigi(v,u) = 0 itself

is a quadratic equality constraint. We also know from (ii) of Condition 5.1.1 that the

Lagrange multipliers λi (i = 1, 2, . . . , m1) involved in the QOP (5.3) are bounded. So we

assume to know a sufficiently large number M which bounds the Lagrange multipliers. The

bound is necessary because the SSDP and SSILP relaxation methods require initial compact

polyhedral relaxation C0 for the feasible region of the problem to be solved. We must say,

however, that the tightness of upper bounds for the Lagrange multipliers deeply affects the

performance of the SSDP and SSILP relaxation methods. In Section 5.2, we will present an

additional technique to confine the Lagrange multipliers into a bounded convex set without

setting a priori explicit bound M for them.

To meet the formulation (1.2) for the SSDP and SSILP relaxations, we now rewrite the

QOP (5.3) as

max cT x subject to x ∈ F, (5.5)

CHAPTER 5. AN APPLICATION OF SCRMS TO BQOPS 65

where

x =




λ

s

w


 ∈ R2m1+n, c =




0
0
c̄


 ∈ R2m1+n, c̄ =

(
c1

c2

)
∈ Rn,

F = {x ∈ C0 : p(x) ≤ 0 (∀p(·) ∈ PF)},

PF =

{
qi(·) (i = 1, . . . , m1 + n1 +m1 +m2),
−qj(·) (j = 1, . . . , m1 + n1 +m1)

}
,

q(x) =




q1(x)
...

qm1(x)
...

qm1+n1(x)
qm1+n1+1(x)

...
qm1+n1+m1(x)
qm1+n1+m1+1(x)

...
qm1+n1+m1+m2(x)




=




λ1s1
...

λm1sm1

∇vg0(v,u) +
m1∑

i=1

λi∇vgi(v,u)

g1(v,u) + s1
...

gm1(v,u) + sm1

f1(v,u)
...

fm2(v,u)




for ∀x =




λ

s

w


 ,

C0 =





x =




λ

s

w


 ∈ R2m1+n :

0 ≤ λi ≤ M (i = 1, . . . , m1),
0 ≤ si ≤ s̄i (i = 1, . . . , m1),
w ∈ G0




.

Note that PF is a set of quadratic functions on R2m1+n. In particular, it includes nonconvex

quadratic functions induced from the complementarity constraints.

5.2 Special Techniques for BQOPs

Here we consider the discretized-localized SSDP and SSILP relaxation methods given in Sec-

tion 2.3.2 and their practical algorithms (Algorithms 4.1.1 and 4.1.2). For the discretized-

localized SSILP, its numerical results on the general quadratic test problems were already

reported in Section 4.2.2. In this section, regarding to a special quadratic problem QOP

(5.5), we will present two types of techniques to enhance the efficiency of Algorithms 4.1.1

and 4.1.2; one technique reformulates the special QOP (5.5) into an equivalent scaled prob-

lem with explicit bounds for the Lagrange multipliers, and the other technique tightens

upper or lower bounds for each complementary pair of variables.

5.2.1 Scaling Lagrange Multipliers

In order to apply Algorithms 4.1.1 and 4.1.2 to the formulation (5.5), we need to give

an initial compact polyhedral relaxation C0 of the feasible region F . Among the variable

CHAPTER 5. AN APPLICATION OF SCRMS TO BQOPS 66

vectors λ, w and s, w is confined into the compact polyhedral set G0 and s into the

compact polyhedral set Πm1
i=1[0, s̄i]. Here s̄i denotes a finite positive number given in (5.4).

We have also assumed to know a positive number M which bounds the Lagrange multipliers

λi (i = 1, 2, . . . , m1) in Section 5.1. Such a positive number certainly exists in view of (ii)

of Condition 5.1.1. It is usually difficult, however, to estimate (tight) upper bounds for the

Lagrange multipliers from the QOP formulation (5.3) of the BQOP (5.2).

To avoid such a difficulty, we artificially restrict the range of values for Lagrange multi-

pliers by introducing a scaling variable α into the QOP (5.3):

max
µ,s,w,α

cT
1 v + cT

2 u

subject to α∇vg0(v,u) +
m1∑

i=1

µi∇vgi(v,u) = 0,

gi(v,u) + si = 0, 0 ≤ si ≤ s̄i (i = 1, . . . , m1),

µisi = 0, 0 ≤ µi ≤ 1 (i = 1, . . . , m1),

α +
m1∑

i=1

µi = 1, 0 ≤ α ≤ 1,

fi(v,u) ≤ 0 (i = 1, . . . , m2), w =

(
v

u

)
∈ G0.





(5.6)

Lemma 5.2.1. The QOP (5.3) is equivalent to the scaled QOP (5.6) in the sense that

(λ, s,w) ∈ R2m1+n is a feasible solution of the QOP (5.3) if and only if (µ, s,w, α) ∈

R2m1+n+1 is a feasible solution of the scaled QOP (5.6) with µ = αλ and some α > 0.

Proof: Suppose that (λ, s,w) ∈ R2m1+n is a feasible solution of the QOP (5.3). Let

α =
1

1 +
m1∑

i=1

λi

> 0 and µ = αλ.

The above equalities derive α (1 +
∑m1

i=1 λi) = α +
∑m1

i=1 µi = 1, which corresponds to one

of the constraints in (5.6). Clearly, µ and α defined above satisfy the other constraints of

(5.6), and hence, (µ, s,w, α) ∈ R2m1+n+1 is a feasible solution of the scaled BQOP (5.6).

Now suppose that (µ, s,w, α) is a feasible solution of the scaled QOP (5.6). If α = 0,

then the constraints α +
∑m1

i=1 µi = 1 and α∇vg0(v,u) +
∑m1

i=1 µi∇vgi(v,u) = 0 of (5.6)

contradict to (ii) of Condition 5.1.1. Hence α > 0. Let λ = µ/α. Then (λ, s,w) turns

out to be a feasible solution of the QOP (5.3).

We rewrite the scaled QOP (5.6) as

max cT x subject to x ∈ F, (5.7)

CHAPTER 5. AN APPLICATION OF SCRMS TO BQOPS 67

where

x =




µ

s

w

α


 ∈ R2m1+n+1, c =




0
0
c̄

0


 ∈ R2m1+n+1, c̄ =

(
c1

c2

)
∈ Rn,

F = {x ∈ C0 : p(x) ≤ 0 (∀p(·) ∈ PF)},

PF =

{
qi(·) (i = 1, . . . , m1 + n1 +m1 +m2),
−qj(·) (j = 1, . . . , m1 + n1 +m1)

}
,

q(x) =




q1(x)
...

qm1(x)
...

qm1+n1(x)
qm1+n1+1(x)

...
qm1+n1+m1(x)
qm1+n1+m1+1(x)

...
qm1+n1+m1+m2(x)




=




µ1s1
...

µm1sm1

α∇vg0(v,u) +
m1∑

i=1

µi∇vgi(v,u)

g1(v,u) + s1
...

gm1(v,u) + sm1

f1(v,u)
...

fm2(v,u)




for ∀x =




µ

s

w

α


 ,

C0 =





x =




µ

s

w

α


 ∈ R2m1+n+1 :

0 ≤ µi ≤ 1 (i = 1, . . . , m1),
α +

∑m1
i=1 µi = 1, 0 ≤ α ≤ 1,

0 ≤ si ≤ s̄i (i = 1, . . . , m1),
w ∈ G0




.

Now C0 is a compact polyhedral set, so that we can apply Algorithms 4.1.1 and 4.1.2 to the

problem (5.7).

5.2.2 Tightening Upper Bounds for Each Complementary Pair of

Variables

If x is a feasible solution of the QOPs (5.5) or (5.7), then it must satisfy the complementarity

condition:

xi ≥ 0, xm1+i ≥ 0 and xixm1+i = 0, i = 1, 2 . . .m1. (5.8)

Exploiting the complementarity condition, we can tighten upper bounds on some of the

nonnegative variables xi (i = 1, 2, . . . , 2m1). In fact, if the set {x ∈ Ck : xm1+i = 0} is

empty, we can conclude that xm1+i > 0 and xi = 0 for every x ∈ F . Otherwise

xi ≤ max{eT
i x : x ∈ Ck, xm1+i = 0} for every x ∈ F .

Therefore, in Step 1 and Step 4 with D2 = D(π/2) of Algorithms 4.1.1 and 4.1.2, we can

replace α(Ck, ei) by

α′(Ck, ei) =

{
0 if {x ∈ Ck : xm1+i = 0} = ∅,
max{eT

i x : x ∈ Ck, xm1+i = 0} otherwise,

CHAPTER 5. AN APPLICATION OF SCRMS TO BQOPS 68

and similarly α(Ck, em1+i) by

α′(Ck, em1+i) =

{
0 if {x ∈ Ck : xi = 0} = ∅,
max{eT

m1+ix : x ∈ Ck, xi = 0} otherwise.

It should be noted that α′(Ck, ei) ≤ α(Ck, ei) and α′(Ck, em1+i) ≤ α(Ck, em1+i) in general.

If the strict inequality holds above, then we can strengthen the SDP (or SILP) relaxation in

Step 6 of Algorithm 4.1.1 (or Algorithm 4.1.2). We call Algorithm 4.1.1 (or Algorithm 4.1.2)

combined with this technique as the modified Algorithm 4.1.1 (or modified Algorithm 4.1.2).

5.2.3 An Illustrating Example

In this section, we present an example to highlight the main idea of this paper. This example

of bilevel quadratic program is taken from Shimizu and Aiyoshi [58].

max
x

F (x, y) = −x2 − (y − 10)2

subject to y ∈ argmin
y

{
(x + 2y − 30)2 :

x+ y ≤ 20,
0 ≤ y ≤ 20

}
,

0 ≤ x ≤ 15, −x+ y ≤ 0.





(5.9)

Applying the KKT optimality condition to the lower level problem and introducing a scaling

variable α, we transform the problem (5.9) into

max t
subject to

x2 + (y − 10)2 + t = 0,
x+ y ≤ 20, −x+ y ≤ 0,

}
(feasibility)

α(4x+ 8y − 120) + µ1 + µ2 − µ3 = 0, (stationarity),
µ1(20− x− y) = 0,
µ2(20− y) = 0, µ3y = 0,

}
(complementarity)

α+
3∑

i=1

µi = 1, 0 ≤ α ≤ 1,

0 ≤ µi ≤ 1 (i = 1, · · · , 3),
0 ≤ x ≤ 15, 0 ≤ y ≤ 20.





(bounds)





(5.10)

In this example (5.9), the upper level problem has a quadratic objective function, so that

we have replaced it by a new single variable t to make a linear objective function.

In the scaled QOP formulation (5.10), the scaling technique presented in Section 5.2.1

has derived the quadratic equality constraint

α(4x+ 8y − 120) + µ1 + µ2 − µ3 = 0,

while if we assume a sufficiently large number M as upper bounds for the Lagrange mul-

tipliers λi (i = 1, . . . , 3) of the lower level problem of (5.9), we have the linear equality

constraint

4x+ 8y − 120 + λ1 + λ2 − λ3 = 0.

CHAPTER 5. AN APPLICATION OF SCRMS TO BQOPS 69

Therefore, the scaling technique has created an additional quadratic equality constraint

which may worsen the quality of approximation of the maximum objective function value,

although the technique is important because M chosen may not be guaranteed to bound

the Lagrange multipliers λi (i = 1, . . . , 3).

Now we apply the technique proposed in Section 5.2.2 to the complementarity constraints

µ1(20−x−y) = 0, µ2(20−y) = 0 and µ3y = 0. For simplicity of notation, we use a variable

itself instead of the corresponding unit coordinate vector ei below; for example, α(Ck, y)

stands for α(Ck, ei) where ei denotes the unit coordinate vector corresponding to the y axis.

When a set Dk ⊂ D of direction vectors at the kth iterate is equal to D(π/2) = ±I, we

compute

α′(Ck, y) = max{y : (x, y,µ, α, t) ∈ Ck, µ3 = 0},

α′(Ck,−y) = max{−y : (x, y,µ, α, t) ∈ Ck, µ2 = 0},

α′(Ck, µ1) = max{µ1 : (x, y,µ, α, t) ∈ Ck, x+ y = 20},

instead of α(Ck, y), α(Ck,−y) and α(Ck, µ1). Also, if α′(Ck, y) < 20 or α′(Ck,−y) < 0 holds

in this example, we can set µ2 = 0 or µ3 = 0 in the succeeding iterations, respectively.

Regarding to upper bounds for µ2 and µ3, we also obtain tighter values by

α′(Ck, µ2) = max{µ2 : (x, y,µ, α, t) ∈ Ck, y = 20, µ3 = 0},

α′(Ck, µ3) = max{µ3 : (x, y,µ, α, t) ∈ Ck, y = 0, µ2 = 0}.

5.3 Computational Experiments on BQOPs

For some quadratic bilevel programming problems, we now present numerical results that

illustrate the behavior of the specialized Algorithm 4.1.2 with techniques proposed in Sec-

tion 5.2. The program was coded in C++ language and run on a DEC Alpha Workstation

(600 MHz with 1GB of memory). We used CPLEX Version 6.0 as LP solver to compute

α(Ck,d) in Steps 1, 2 and 4 of Algorithm 4.1.2.

5.3.1 Some Implementation Details

We start Algorithm 4.1.2 by constructing a set D2 = D(θ) with θ = π/2 of direction vectors

according to the definition (4.2). If the decrease in the upper bound ζk for the maximum

objective function value becomes little in some iteration, we reduce the value θ to replace

D(θ). Otherwise, we use the same set of direction vectors as that of the previous iteration.

Throughout the computational experiments, we use the following replacement rule:

Let ` = 0, θ0 = π/2, K = 3 and {σj}
K
j=0 be a decreasing sequence such that {1,

8

9
,
4

9
,
2

9
}.

If the upper bound ζk generated at the kth iteration remains to satisfy

ζk−1 − ζk
max{|ζk|, 1.0}

≥ 0.001× σ`,

CHAPTER 5. AN APPLICATION OF SCRMS TO BQOPS 70

then set θk = θk−1. Else if ` < K, then set ` = ` + 1 and θk = σ`θ0, which implies the

replacement of D(θk). Otherwise stop the procedure.

For the comparison, we implemented Algorithm 4.1.2 with another typical algorithm re-

lated with the lift-and-project procedure for quadratic programs; the RLT (Reformulation-

Linearization Technique) proposed by [55, 57]. The QOP formulations (5.3) and (5.6)

of BQOPs usually have some linear constraints such as bound constraints in addition to

quadratic ones. Following the idea of the RLT, we generate quadratic constraints through

the the products of pairwise linear constraints. Together with the original quadratic con-

straints, those new ones are added as input data for the algorithm. We call the expanded

input data as “DataRLT” while the original data as “DataDLSSILP”. We compare the

following five cases:

DLSSILP : Algorithm 4.1.2 with input DataDLSSILP;

DLSSILP+RLT : Algorithm 4.1.2 with input DataRLT;

mDLSSILP : the modified Algorithm 4.1.2 (Section 5.2.2) with input DataDLSSILP;

mDLSSILP+RLT : the modified Algorithm 4.1.2 (Section 5.2.2) with input DataRLT;

RLT : the LP relaxation for input DataRLT;

with respect to the following items:

fup : the solution value found by each algorithm,

R.error : the relative error of a solution, i.e.,
|fup − fopt|

max{|fopt|, 1.0}
,

where fopt is the global optimum value;

cpu : the cpu time in second;

iter. : the number of iterations the algorithm repeated.

5.3.2 Numerical Results

We evaluate the five methods described in the previous subsection (Section 5.3.1) using a set

of test problems. Table 5.1 shows some characteristics of the test problems. n1, n2, m1 and

m2 are introduced in the formulation (5.2), and #conv (or #non-conv) indicates the number

of convex (or nonconvex, respectively) quadratic constraints in the lower or upper level

problem. The transformed one-level mathematical program (5.3) via the KKT optimality

condition, includes additional m1 nonconvex complementarity constraints. Moreover, the

technique proposed in Section 5.2.1 increases the number of nonconvex quadratic constraints

by n1. Therefore, the QOP (5.3) (or the scaled QOP (5.6)) has #non-conv+m1 (or #non-

conv+m1+n1, respectively) nonconvex quadratic constraints. The test problems of Table 5.1

are basically chosen from the literature. A nonconvex BQOP, which we call “bard2”, is

constructed from Problem “bard1” by multiplying the upper level convex objective function

by -1.

CHAPTER 5. AN APPLICATION OF SCRMS TO BQOPS 71

Table 5.1: The test problems

Problem Source n1 n2 m1 m2 fopt
bard1 [10] 1 1 5 2 -17.00
bard2 – 1 1 5 2 68.78
bard3 [10] 2 2 5 4 14.36
shimizu1 [58] 1 1 4 4 -100.00
shimizu2 [58] 2 2 5 4 -225.00
aiyoshi1 [2] 2 2 7 5 -60.00
aiyoshi2 [1] 4 4 14 10 6600.00

Tables 5.2 and 5.3 present numerical results on the test problems when they are reformu-

lated into the QOP (5.3) and the scaled QOP (5.6), respectively. Figures 5.1 and 5.2 show

how the upper bound ζk for the maximum objective function value of Problem “shimizu1”

decreases as the iteration proceeds. Problem “shimizu1” of Figure 5.1 takes the QOP

formulation (5.3) and that of Figure 5.2 the scaled QOP formulation (5.6). The lines

“DLSSILP+RLT” and “mDLSSILP+RLT” in Figure 5.2 designate the similar performance

of achieving the global optimum value for Problem “shimizu1”, though the initial upper

bounds for Lagrange multipliers are different.

Our experiments were conducted in order to see how the following three factors affect the

behavior of the algorithms: (i) the scaling technique for Lagrange multipliers (Section 5.2.1);

(ii) the technique for tightening the bound constraints (Section 5.2.2); (iii) the effect of the

RLT.

(i) In the scaled QOP formulation (5.6), we need no deductive upper bounds for Lagrange

multipliers, while in the QOP formulation (5.3) we assumed that λi ≤ 1000, i =

1, . . . , m2 by taking M = 1000 for all the test problems. Comparing the results in

Table 5.2 with those in Table 5.3, we see that the scaling technique works effectively in

several instances such as Problems “bard1“, “bard2” and “shimizu1” in which better

upper bounds for the maximum objective function values were attained. As we have

discussed in Section 5.2.3, however, the scaling technique generates new quadratic

equality constraints, which influence the performance of Algorithm 4.1.2 applied to the

scaled QOP formulation (5.6). In Problems “shimizu2” and “aiyoshi1” of Tables 5.2

and 5.3, we observe that the scaled QOP formulation (5.6) makes the quality of the

upper bound worse.

(ii) Comparing the DLSSILP and mDLSSILP (or, DLSSILP+RLT and mDLSSILP+RLT)

cases in Tables 5.2 and 5.3, we see the effect of tightening the bounds for some vari-

ables. Especially, Problem “aiyoshi1” in Table 5.2 shows the fast convergence to a

better upper bound for the maximum objective function value due to the tight bound

CHAPTER 5. AN APPLICATION OF SCRMS TO BQOPS 72

Table 5.2: DataDLSSILP of the QOP (5.3)

DLSSILP DLSSILP+RLT RLT
Problem

fup R.error cpu iter. fup R.error cpu iter. fup R.error cpu
bard1 -3.07 8.2e-1 4.6 46 -14.92 1.2e-1 4.4 30 -5.00 7.1e-1 0.0
bard2 100.96 4.7e-1 0.9 16 68.86 1.2e-3 0.8 7 75.78 1.0e-1 0.0
bard3 19.99 3.9e-1 2.8 11 14.54 1.2e-2 3.5 14 33.64 1.3e+0 0.0
shimizu1 -95.37 4.6e-2 0.3 14 -96.45 3.6e-2 0.3 11 0.00 1.0e+0 0.0
shimizu2 -224.13 3.9e-3 0.8 11 -225.00 6.1e-15 0.8 6 -125.00 4.4e-1 0.0
aiyoshi1 -55.41 7.7e-2 21.6 53 -59.69 5.2e-3 6.9 11 -41.70 3.1e-1 0.0
aiyoshi2 6786.19 2.8e-2 38.1 8 6625.64 3.9e-3 140.0 7 7200.00 9.1e-2 0.3

mDLSSILP mDLSSILP+RLT
Problem

fup R.error cpu iter. fup R.error cpu iter.
bard1 -3.07 8.2e-1 4.2 46 -14.92 1.2e-1 4.2 30
bard2 100.91 4.7e-1 0.8 15 68.86 1.2e-3 0.8 7
bard3 18.90 3.2e-1 5.5 21 14.57 1.5e-2 2.9 12
shimizu1 -95.75 4.3e-2 0.2 11 -96.74 3.3e-2 0.2 10
shimizu2 -225.00 5.3e-15 0.4 6 -225.00 3.8e-16 0.7 6
aiyoshi1 -59.82 3.0e-3 2.3 9 -60.00 1.2e-15 1.4 6
aiyoshi2 6647.18 7.2e-3 20.3 6 6614.68 2.2e-3 100.2 6

Figure 5.1: Problem “shimizu1 (QOP)”

-100

-80

-60

-40

-20

0

20

40

60

0 2 4 6 8 10 12 14

up
pe

r
bo

un
d

iteration

"DLSSILP"
"DLSSILP+RLT"

"mDLSSILP"
"mDLSSILP+RLT"

CHAPTER 5. AN APPLICATION OF SCRMS TO BQOPS 73

Table 5.3: DataDLSSILP of the scaled QOP (5.6)

DLSSILP DLSSILP+RLT RLT
Problem

fup R.error cpu iter. fup R.error cpu iter. fup R.error cpu
bard1 -14.75 1.3e-1 6.3 40 -16.40 3.6e-2 4.6 26 -3.00 8.2e-1 0.0
bard2 72.01 4.7e-2 1.8 24 68.78 3.0e-9 0.8 8 94.67 3.8e-1 0.0
bard3 14.80 3.1e-2 4.2 16 14.57 1.4e-2 3.9 13 33.64 1.3e+0 0.0
shimizu1 -98.39 1.6e-2 0.4 12 -99.36 6.4e-3 0.2 6 0.00 1.0e+0 0.0
shimizu2 -99.54 5.6e-1 1.9 11 -122.71 4.6e-1 6.6 24 -25.00 8.9e-1 0.0
aiyoshi1 -59.43 9.5e-3 29.6 26 -55.90 6.8e-2 29.8 31 -31.00 4.8e-1 0.0
aiyoshi2 6841.73 3.7e-2 19.5 8 6769.46 2.6e-2 48.1 6 7200.00 9.1e-2 0.1

mDLSSILP mDLSSILP+RLT
Problem

fup R.error cpu iter. fup R.error cpu iter.
bard1 -14.79 1.3e-1 6.1 40 -16.42 3.4e-2 4.2 23
bard2 72.35 5.2e-2 1.7 23 68.78 3.0e-9 0.8 8
bard3 14.80 3.0e-2 4.0 15 14.56 1.4e-2 3.5 13
shimizu1 -100.00 1.4e-15 0.2 6 -100.00 2.7e-15 0.3 6
shimizu2 -168.58 2.5e-1 3.3 30 -210.25 6.6e-2 1.5 10
aiyoshi1 -59.34 1.1e-2 25.3 26 -56.07 6.6e-2 22.0 32
aiyoshi2 6841.72 3.7e-2 18.5 8 6768.79 2.6e-2 46.4 6

Figure 5.2: Problem “shimizu1 (Scaled QOP)”

-100

-80

-60

-40

-20

0

20

40

60

0 2 4 6 8 10 12

up
pe

r
bo

un
d

iteration

"DLSSILP"
"DLSSILP+RLT"

"mDLSSILP"
"mDLSSILP+RLT"

CHAPTER 5. AN APPLICATION OF SCRMS TO BQOPS 74

constraints, and also, Problem “shimizu1” in Table 5.3 shows a significant improve-

ment. There are, however, some exceptions, e.g. in Problem “aiyoshi1” of Table 5.3,

the DLSSILP case shows a little better performance than the mDLSSILP case. This

is due to the difference in timing when the parameter θ of Algorithm 4.1.2 changes in

the cases DLSSILP and mDLSSILP.

(iii) While the sole use of the RLT generates rough upper bounds, the RLT enhances the

efficiency of Algorithm 4.1.2 as Tables 5.2, 5.3 and Figures 5.1, 5.2 show. Although

the combined method (mDLSSILP+RLT) required the greatest computational effort,

it achieved the tightest upper bound with less computing time in several instances,

due to its fast convergence.

Our method consumes relatively much computing time in order to achieve tighter upper

bounds for maximum objective function values. However, note that Figures 5.1 and 5.2

show great improvements in upper bounds for the maximum objective function values at

the first several iterations. Further extension of the research could be to incorporate the

first several iterations of the SCRM into the branch-and-bound method for solving difficult

BQOPs including several nonconvex quadratic constraints.

Chapter 6

Parallel Implementations of
Successive Convex Relaxation
Methods

As observed in previous chapters, SCRMs (successive convex relaxation methods) with the

use of SDP (semidefinite programming) or SILP (semi-infinite LP) relaxation solve a large

number of SDPs or LPs at every iteration in order to constitute relaxed convex regions Ck

(k = 1, 2, . . .) of the feasible region F of a QOP (quadratic optimization problem). On

that occasion, SCRMs generate a large number of problems simultaneously and solve them

sequentially on a single processor. In this chapter, we pay attention to the structure of

SCRMs suitable to parallel computing, and propose parallel SCRMs which process some

problems at the same time using multiple processors on a client-server parallel computing

system.

To enhance the effect of parallel computing, we reduce the work of a client machine

and also, decrease transmitting time between computers as much as possible. The result is

a highly parallel algorithm, which we implement on the Ninf (network based information

library for high performance computing) system [50, 52]. Moreover, the parallel SCRMs

adopt new construction for Ck (k = 1, 2, . . .) so that the number of constraints of each SDP

or LP is considerably decreased. As a result, we can deal with some larger-sized QOPs,

which not only previous SCRMs but also a popular bounding technique [57] called RLT

(Reformulation-Linearization Technique) cannot process.

This chapter consists of the following four sections. In Section 6.1, we introduce basic

discretized-localized SCRMs with successive SDP or SILP relaxations and presents their

serial implementation. In Section 6.2 we provide new construction for convex relaxations

Ck (k = 1, 2, . . .) of the feasible region of a QOP. The construction increases the number

of SDPs or LPs to be solved sometimes, but decreases the number of constraints included

in each SDP or LP considerably. Then, we show a parallel algorithm of the discretized-

localized SCRMs. In Section 6.3, we report numerical results of a parallel SCRM on a

client-server parallel computing system.

75

CHAPTER 6. PARALLEL IMPLEMENTATIONS 76

6.1 Properties of Previous SCRMs

As practical discretized-localized SCRMs, we proposed Algorithms 4.1.1 for the SSDP (suc-

cessive semidefinite programming) relaxation method, and Algorithms 4.1.2 for the SSILP

(successive semi-infinite LP) relaxation method in Chapter 4. Concerning the SSILP relax-

ation method, its numerical results were already reported there.

An aim of this chapter is to provide new SCRMs suitable for parallel computing, whose

function-sets Pk and relaxations Ck are different from the ones described in Chapter 4. To

highlight the difference between the previous SCRMs and our new SCRMs presented here,

we will present how to construct Pk from the direction-sets D1 and D2 for each SCRM.

Before taking up the main subject, we describe our problem dealt with in this chapter,

and depict a basic algorithm of discretized-localized SCRMs. We assume that the feasible

region of a QOP consists of a finite number of quadratic constraints. Then, the QOP can

be written as follows;

(QOP)

∣∣∣∣∣
max cT x

subject to γ` + 2qT
` x + xT Q`x ≤ 0, ` = 1, . . . , m,

(6.1)

where m is some positive number, c ∈ Rn, γ` ∈ R, q` ∈ R
n and Q` ∈ R

n×n (` = 1, . . . , m).

Using a compact convex set C0 such that F ⊆ C0, we write a feasible region of (6.1) as

F ≡ {x ∈ C0 : qf(x; γ, q,Q) ≤ 0 (∀qf(·; γ, q,Q) ∈ PF)},

qf(x; γ, q,Q) ≡ γ + 2qT x + xT Qx, ∀x ∈ Rn,

PF ≡ {γ` + 2qT
` x + xT Q`x : ` = 1, . . . , m}.

Algorithm 6.1.1. (serial implementation of discretized-localized SCRMs)

Step 0: Let D1 ⊆ D. Construct a function-set PL(C0, D1) by computing

α(C0,d) = max{dT x : x ∈ C0} (∀d ∈ D1).

Let k = 0.

Step 1: If Ck = ∅, then stop. Compute an upper bound ζk for the maximum objective

function value of QOP (6.1) by ζk = max{cT x : x ∈ Ck}. If ζk satisfies the termination

criteria, then stop.

Step 2: Let D2 = D(θ) with some value θ. Compute

α(Ck,d) = max{dT x : x ∈ Ck} (∀d ∈ D2).

Step 3: Construct a set Pk = PL(C0, D1) ∪ P
2(Ck, D1, D2). The set Pk induces valid

inequalities for Ck.

CHAPTER 6. PARALLEL IMPLEMENTATIONS 77

Step 4: Define

Ck+1 =

{
F̂ (C0,PF ∪ Pk) for the SSDP relaxation method,

F̂
L
(C0,PF ∪ Pk) for the SSILP relaxation method.

Step 5: Let k = k + 1, and go to Step 1.

The termination criteria of Step 1 and the choice of θ for the set D(θ) follow from the

rule of Algorithm 4.1.1. Algorithm 6.1.1 above lacks the definitions for the sets of vectors

D1 and D2. In previous works [32, 33, 62, 64], SCRMs commonly utilize D1 such as

D1 = ±I ≡ {e1, . . . , en,−e1, . . . ,−en}. (6.2)

Practical SCRMs, proposed in Chapter 4, construct D2 = D(θ) as

D(θ) ≡ { bi+(θ), bi−(θ), i = 1, 2, . . . , n} (6.3)

with a parameter θ ∈ (0, π/2]. Here,

νi+(θ) = ‖c cos θ + ei sin θ‖, νi−(θ) = ‖c cos θ − ei sin θ‖,

bi+(θ) =
c cos θ + ei sin θ

νi+(θ)
, bi−(θ) =

c cos θ − ei sin θ

νi−(θ)
.

In (6.3), the objective direction c is excluded fromD(θ) defined in Chapter 4, for simplicity of

following discussion. Therefore, P2(Ck, D1, D2) withD1 = ±I andD2 = D(θ) is constructed

as

P2(Ck, D1, D2) =





r2sf(x;Ck,−ej, bi+(θ)), r2sf(x;Ck, ej , bi−(θ))
r2sf(x;Ck, ej , bi+(θ)), r2sf(x;Ck,−ej, bi−(θ))
i = 1, . . . , n, j = 1, . . . , n




. (6.4)

In practical SCRMs, P2(Ck, D1, D2) is constructed according to (6.4) in Step 3 of Algo-

rithm 6.1.1. If the algorithm takes the SDP relaxation F̂ (C0,PF ∪ Pk) as Ck+1, we call

the algorithm DLSSDP, and if the algorithm takes the SILP relaxation F̂
L
(C0,PF ∪ Pk)

instead of F̂ (C0,PF ∪ Pk), we call it DLSSILP.

When we take θ = π/2 at the first iteration of Algorithm 6.1.1, the vectors bi+(θ) and

bi−(θ) (i = 1, . . . , n) of D2 turn out to be the unit vectors ei and −ei, respectively. Then,

the values α(C0, ei) and −α(C0,−ei) correspond upper and lower bounds for the variable xi,

respectively. In this case, the set P2(C0, D1, D2) consists of the pairwise products of lower

and upper bounding constraints for variables xi (i = 1, 2, . . . , n). These constraints cor-

respond to underestimators and overestimators of quadratic terms xixj (i, j = 1, 2, . . . , n),

which were introduced in [37] and have been used in some lower (or upper) bounding proce-

dure of branch-and-bound methods (for instance, see [47, 71]). We also see that both bi+(θ)

CHAPTER 6. PARALLEL IMPLEMENTATIONS 78

and bi−(θ) (i = 1, . . . , n) approach to the objective direction c as θ→ 0. See Chapter 4 for

more details.

Here we will show that each quadratic function γ` +2qT
` x+xT Q`x (` = 1, . . . , m) of PF

can be convexified (or linearized) in the relaxation F̂ (C0,PF ∪ Pk) (or F̂
L
(C0,PF ∪ Pk))

through the use of quadratic functions of P2(Ck, D1, D2) ⊂ Pk defined above. To show that,

we use Lemma 2.2.3 of Chapter 2:

(i) F̂ (C0,PF ∪ Pk) = {x ∈ C0 : p(x) ≤ 0 (∀p(·) ∈ c.cone(PF ∪ Pk) ∩ Q+)},

(ii) F̂
L
(C0,PF ∪ Pk) = {x ∈ C0 : p(x) ≤ 0 (∀p(·) ∈ c.cone(PF ∪ Pk) ∩ L)}.

Adding some two functions of P2(Ck, D1, D2) ⊂ Pk induces quadratic functions with

only one quadratic term xixj such that

qfij(x) ≡
νi+(θ)

2 sin θ
r2sf(x;Ck,−ej , bi+(θ)) +

νi−(θ)

2 sin θ
r2sf(x;Ck, ej, bi−(θ))

= xT eie
T
j x + (aT

ijx + bij) (i, j = 1, 2, . . . , n).





(6.5)

The above aij ∈ Rn and bij ∈ R are expressed as

aij = 1
2 tan θ

{α(C0,−ej) + α(C0, ej)} c

+ 1
2
{α(C0,−ej)− α(C0, ej)} ei

+ 1
2 sin θ

{νi−(θ)α(Ck, bi−(θ))− νi+(θ)α(Ck, bi+(θ))} ej ,

bij = − 1
2 sin θ

{νi+(θ)α(C0,−ej)α(Ck, bi+(θ)) + νi−(θ)α(C0, ej)α(Ck, bi−(θ))} .





(6.6)

Adding some two functions of P2(Ck, D1, D2) also generates such quadratic functions with

only one quadratic term −xixj that

qf ′ij(x) ≡
νi+(θ)

2 sin θ
r2sf(x;Ck, ej, bi+(θ)) +

νi−(θ)

2 sin θ
r2sf(x;Ck,−ej, bi−(θ))

= −xT eie
T
j x + (a′

ij
T x + b′ij) (i, j = 1, 2, . . . , n).





(6.7)

The above a′
ij ∈ Rn and b′ij ∈ R of qf ′ij(x) have similar expressions to aij and bij of (6.6),

respectively. We omit the detailed description for them. The definitions of qfij(x) and

qf ′ij(x), shown as (6.5) and (6.7) respectively, indicate that qfij(x), qf ′ij(x) ∈ c.cone(PF ∪

Pk) for i, j = 1, . . . , n. Hence, from Lemma 2.2.3 (ii), we see that F̂
L
(C0,PF ∪Pk) includes

the following linear function g`(x), ` = 1, . . . , m.

g`(x) ≡ (γ` + 2qT
` x + xT Q`x) +

∑

(i,j)

Q
(i,j)
`+ qf ′ij(x)−

∑

(i,j)

Q
(i,j)
`− qfij(x)

= (γ` +
∑

(i,j)

Q
(i,j)
`+ b′ij −

∑

(i,j)

Q
(i,j)
`− bij) + (2q` +

∑

(i,j)

Q
(i,j)
`+ a′

ij −
∑

(i,j)

Q
(i,j)
`− aij)

Tx,





(6.8)

CHAPTER 6. PARALLEL IMPLEMENTATIONS 79

where the (i, j)th element of the matrix Q` is Q
(i,j)
` and

Q
(i,j)
`+ =

{
Q

(i,j)
` if Q

(i,j)
` > 0

0 otherwise,
Q

(i,j)
`− =

{
Q

(i,j)
` if Q

(i,j)
` < 0

0 otherwise.

We can regard that g`(x) ≤ 0 gives a linear relaxation for a quadratic constraint γ` +

2qT
` x + xT Q`x ≤ 0 of (6.1). Moreover, we expect that P2(Ck, D1, D2) generates much

tightly relaxed linear constraints than g`(x) ≤ 0 for the constraint γ` + 2qT
` x + xT Q`x ≤ 0

in the SILP relaxation F̂
L
(C0,PF ∪Pk), and that it generates much tightly relaxed convex

constraints than g`(x) ≤ 0 in the SDP relaxation F̂ (C0,PF ∪ Pk).

As shown above, all quadratic functions γ` + 2qT
` x + xT Q`x (` = 1, . . . , m) of PF are

convexified or linearized in Ck+1 through the use of quadratic functions of P2(Ck, D1, D2) ⊂

Pk. The linear functions of PL(C0, D1) ⊂ Pk also play an important role to construct Ck+1.

See Remark 2.3.6 of Chapter 2, for the role of PL(C0, D1).

6.2 Parallel Successive Convex Relaxation Methods

In Step 2 of Algorithm 6.1.1, 2n SDPs or LPs including 4n2 additional quadratic constraints

are generated for constructing P2(Ck, D1, D2). It should be emphasized that these 2n prob-

lems are independent and we can process them in parallel. Thus, in this section we consider

parallel computation for some SDPs or LPs.

Parallel computation is much help to reduce computational time drastically, while 4n2

constraints in each SDP or LP become an obstacle when we solve larger dimensional QOPs

(6.1). In Section 6.2.1, we design new SCRMs so that each SDP or LP has fewer number of

constraints than 4n2, though they might increase the number of problems to be solved at

each iteration. Then, in Section 6.2.2, we will modify Algorithm 6.1.1 and present a parallel

algorithm for the client-server based computing system.

6.2.1 An Effective Technique for Reducing Inequalities

At the kth iteration of Algorithm 6.1.1, SDPs or LPs with a feasible region Ck are con-

structed in Step 2. Note that Ck+1 consists of Pk = PL(C0, D1) ∪ P
2(Ck, D1, D2) and PF .

In order to reduce the number of constraints of each SDP or LP, we devise another candidate

for D1, D2 = D(θ) and P2(Ck, D1, D2).

Here we introduce new notation. Let λ`
1, . . . , λ

`
n (` = 1, 2, . . . , m) denote n eigenvalues of

matrices Q` (` = 1, 2, . . . , m) which appear in the quadratic constraints γ`+2qT
` x+xT Q`x ≤

0 (` = 1, 2, . . . , m) of QOP (6.1). And, let Λ` (` = 1, 2, . . . , m) denote a diagonal matrix

diag(λ`
1, . . . , λ

`
n). For each matrix Q`, there exists a real orthogonal matrix P ` such that

P T
` Q`P ` = Λ`. Using the above notation, we define the sets I+(`) and I+(`) (` = 1, . . . , m)

CHAPTER 6. PARALLEL IMPLEMENTATIONS 80

as
I+(`) ≡ the set of indices corresponding to positive diagonal

elements of Λ`, that is, λ`
i > 0 for ∀i ∈ I+(`),

I−(`) ≡ the set of indices corresponding to negative diagonal
elements of Λ`, that is, λ`

j < 0 for ∀j ∈ I−(`).

From the definition, we see that I+(`), I−(`) ⊆ {1, 2, . . . , n} and I+(`) ∩ I−(`) = ∅.

Next, we define new vectors with a parameter θ ∈ (0, π/2]:

ν`
i+(θ) = ‖c cos θ + (P `ei) sin θ‖, ν`

i−(θ) = ‖c cos θ − (P `ei) sin θ‖,

b`
i+(θ) =

c cos θ + (P `ei) sin θ

ν`
i+(θ)

, b`
i−(θ) =

c cos θ − (P `ei) sin θ

ν`
i−(θ)

,

and propose different constructions of D1, D2 = D(θ) and P2(Ck, D1, D2) for the SDP

relaxation as

DS
1 ≡ {P `ei,−P `ei, i ∈ I−(`), ` = 1, . . . , m},

DS
2 ≡ {b`

i+(θ), b`
i−(θ), i ∈ I−(`), ` = 1, . . . , m},

P2
S(Ck, D

S
1 , D

S
2) =

{
r2sf(x;Ck,−P `ei, b

`
i+(θ)), r2sf(x;Ck,P `ei, b

`
i−(θ))

i ∈ I−(`), ` = 1, . . . , m

}
,





(6.9)

and for the SILP relaxation as

DL
1 ≡ {P `ei,−P `ei, i ∈ I−(`) ∪ I+(`), ` = 1, . . . , m},

DL
2 ≡ {b`

i+(θ), b`
i−(θ), i ∈ I−(`) ∪ I+(`), ` = 1, . . . , m},

P2
L(Ck, D

L
1 , D

L
2) =





r2sf(x;Ck,−P `ei, b
`
i+(θ)), r2sf(x;Ck,P `ei, b

`
i−(θ))

r2sf(x;Ck,P `ej, b
`
j+(θ)), r2sf(x;Ck,−P `ej , b

`
j−(θ))

i ∈ I−(`), j ∈ I+(`), ` = 1, . . . , m




.





(6.10)

We designate the SDP relaxation method which takes P2
S(Ck, D

S
1 , D

S
2) for P2(Ck, D1, D2) as

DLSSDP-diag, and the SILP relaxation method which takes P2
L(Ck, D

L
1 , D

L
2) for P2(Ck, D1, D2)

as DLSSILP-diag.

We will show that each quadratic function γ` +2qT
` x+xT Q`x (` = 1, . . . , m) of PF can

be convexified in the relaxation F̂ (C0,PF ∪ Pk) through the use of quadratic functions of

P2
S(Ck, D

S
1 , D

S
2) ⊂ Pk, and also, that each quadratic function of PF can be linearized in the

relaxation F̂
L
(C0,PF ∪Pk) through the use of quadratic functions of P2

L(Ck, D
L
1 , D

L
2) ⊂ Pk.

Firstly, we consider DLSSDP-diag. Here note that all matrices Q` (` = 1, . . . , m) of

quadratic constraints can be expressed as Q` = Q+
` + Q−

` using positive definite matrices

Q+
` (` = 1, . . . , m) and negative definite matrices Q−

` (` = 1, . . . , m);

Q+
` ≡

∑

i∈I+(`)

λ`
i(P `ei)(P `ei)

T , and Q−
` ≡

∑

i∈I−(`)

λ`
i(P `ei)(P `ei)

T .

CHAPTER 6. PARALLEL IMPLEMENTATIONS 81

Adding some two functions of P2
S(Ck, D

S
1 , D

S
2) induces such quadratic functions that

qf `
i (x) ≡

ν`
i+(θ)

2 sin θ
r2sf(x;Ck,−P `ei, b

`
i+(θ)) +

ν`
i−(θ)

2 sin θ
r2sf(x;Ck,P `ei, b

`
i−(θ))

= xT (P `ei)(P `ei)
T x + (a`T

i x + b`i) (` = 1, . . . , m, i ∈ I−(`)).

For simplicity, we omit the precise description for a vector a`
i ∈ Rn and a scalar b`i ∈ R

included in qf `
i (x). Then, using the quadratic functions qf `

i (x) (` = 1, . . . , m, i ∈ I−(`)),

any quadratic function γ` + 2qT
` x + xT Q`x of the constraints in QOP (6.1) can be made

convex as follows.

(γ` + 2qT
` x + xT Q`x)−

∑

i∈I−(`)

λ`
i qf

`
i (x)

= (γ` −
∑

i∈I−(`)

λ`
i b

`
i) + (2q` −

∑

i∈I−(`)

λ`
i a`

i)
T x + xT Q+

` x,

(` = 1, . . . , m).





(6.11)

Hence, to construct the convex relaxation Ck+1, the quadratic functions P2
S(Ck, D

S
1 , D

S
2)

relax all nonconvex quadratic constraints of QOP (6.1) into convex ones.

Secondly, consider DLSSILP-diag. By summing up other two functions of P2
L(Ck, D

L
1 , D

L
2)

such that

qf ′`i (x) ≡
ν`

i+(θ)

2 sin θ
r2sf(x;Ck,P `ei, b

`
i+(θ)) +

ν`
i−(θ)

2 sin θ
r2sf (x;Ck,−P `ei, b

`
i−(θ))

= −xT (P `ei)(P `ei)
T x + (a′

i
`T x + b′i

`) (` = 1, . . . , m, i ∈ I+(`)),

where a′
i
` ∈ Rn and b′i

` ∈ R, and by adding the above quadratic functions to (6.11), we get

linear functions such that

(γ` + 2qT
` x + xT Q`x) +

∑

i∈I+(`)

λ`
i qf

′`
i (x)−

∑

i∈I−(`)

λ`
i qf

`
i (x)

= (γ` +
∑

i∈I+(`)

λ`
i b

′
i
` −

∑

i∈I−(`)

λ`
i b

`
i) + (2q` +

∑

i∈I+(`)

λ`
i a′

i
` −

∑

i∈I−(`)

λ`
i a`

i)
Tx,

(` = 1, . . . , m).





(6.12)

The linear functions of the set c.cone(PF∪Pk)∩L provide linear relaxations for all quadratic

functions of PF . Therefore, the definitions of P2
S(Ck, D

S
1 , D

S
2) and P2

L(Ck, D
L
1 , D

L
2) are

reasonable to make the convex relaxation Ck+1 of the nonconvex feasible region F of QOP

(6.1).

Table 6.1 shows the number of SDPs or LPs to be solved at every iteration, and the

number of constraints each problem has, comparing four versions of SCRMs. |P | denotes

the number of elements belonging to the set P . The entries of Table 6.1 are computed as




#SDP = |D2|,
#LP = |D2|,
#const. = |P2(Ck, D1, D2)|.

CHAPTER 6. PARALLEL IMPLEMENTATIONS 82

Table 6.1: Comparison among four SCRM methods

methods #SDP #LP #const.
DLSSDP 2n 4n2

DLSSDP-diag 2
∑m

`=1 |I−(`)| 2
∑m

`=1 |I−(`)|
DLSSILP 2n 4n2

DLSSILP-diag 2
∑m

`=1(|I+(`)| + |I−(`)|) 2
∑m

`=1(|I+(`)|+ |I−(`)|)

It should be noted that
∑m

`=1 |I−(`)| ≤
∑m

`=1(|I+(`)| + |I−(`)|) ≤ mn. Hence, if m ≤

2n holds between the number of constraints m and the number of variables n for QOP

(6.1), “#const.” of DLSSDP-diag (or DLSSILP-diag) is fewer than that of DLSSDP (or

DLSSILP). For the entries in the columns “#SDP” and “#LP”, we don’t know whether

2
∑m

`=1 |I−(`)| and 2
∑m

`=1(|I+(`)| + |I−(`)|) are larger than 2n. Concerning our test prob-

lems of (6.1) used in numerical experiments, the number of SDPs (or LPs) to be solved in

DLSSDP-diag (or DLSSILP-diag) is larger than that in DLSSDP (or DLSSILP), while each

problem generated in the former has much fewer constraints than that in the latter. We

can confirm this by Tables 6.4 and 6.5 of Section 6.3.2.

Remark 6.2.1. In this section, we have introduced DLSSDP-diag and DLSSILP-diag, to

decrease the number of quadratic constraints in SDPs and LPs generated by Algorithm 6.1.1

(Steps 0 and 2). There is still plenty of room for improvement. To save the amount of work at

each iteration of Algorithm 6.1.1, we can choose less quadratic functions for P2(Ck, D1, D2);

for example, we take

P̃
2

S(Ck, D
S
1 , D

S
2) =

{
r2sf(x;Ck,−P `ei, b

`
i+(θ)) + r2sf(x;Ck,P `ei, b

`
i−(θ))

i ∈ I−(`), ` = 1, . . . , m

}
,

P̃
2

L(Ck, D
L
1 , D

L
2) =





r2sf(x;Ck,−P `ei, b
`
i+(θ)) + r2sf(x;Ck,P `ei, b

`
i−(θ))

r2sf(x;Ck,P `ej , b
`
j+(θ)) + r2sf(x;Ck,−P `ej , b

`
j−(θ))

i ∈ I+(`), j ∈ I−(`), ` = 1, . . . , m




,

instead of P2
S(Ck, D

S
1 , D

S
2) defined by (6.9) and P2

L(Ck, D
L
1 , D

L
2) defined by (6.10), respec-

tively. The number of quadratic functions in P̃
2

S(Ck, D
S
1 , D

S
2) is

∑m
`=1 |I−(`)|, which is half of

that in P2
S(Ck, D

S
1 , D

S
2). Similarly, |P̃

2

L(Ck, D
L
1 , D

L
2)| = 1

2
|P2

L(Ck, D
L
1 , D

L
2)| holds. However,

reducing constraints in SDPs (or LPs) might rather weaken the accuracy of upper bounds.

Consequently, the amount of computation and the accuracy of the relaxation should be

balanced properly.

6.2.2 A Parallel Algorithm

Algorithm 6.1.1 generates a large number of SDPs or LPs simultaneously at each iteration

and solves them sequentially. Therefore, by implementing SCRMs on a parallel computing

CHAPTER 6. PARALLEL IMPLEMENTATIONS 83

Figure 6.1: The client-server based computing system

Client
Program

Client
Machine

Server Machine 1

Server Machine V

Numerical
 Library

Network

system, we can solve some SDPs or LPs simultaneously. Here we will modify Algorithm 6.1.1

for parallel computing on a Ninf (network based information library for high performance

computing) system [50, 52]. The basic Ninf system supports client-server based computing

as Figure 6.1 shows, and provides a global network-wide computing infrastructure devel-

oped for high-performance numerical computation services. It intends not only to exploit

high performance in global network parallel computing, but also to provide a simple pro-

gramming interface similar to conventional function calls in existing languages. We employ

the SDPA [20] as an SDP solver, and also discuss parallel execution of the SDPA on the

Ninf. The SDPA on the Ninf enjoys the following features: 1. Solving many SDPs si-

multaneously without complicated implementation. 2. Computational resources including

hardware, software and scientific data distributed across a wide area network are available.

Here we suppose that we have a computer system consisting of V (≤ |D2|) processors;

if we have more than |D2| processors available, we only use the first |D2|. The kth iteration

of new parallel algorithm constructs SDPs or LPs as

α(Ck,d) = max{dT x : x ∈ Ck} (∀d ∈ D2),

and allocate them to V processors. Then, each processor handles roughly |D2|/V problems,

which are designated by the client machine.

We will provide parallel implementation of Algorithm 6.1.1. In the following algorithm,

the work of the client machine and that of each server machine are described together, and

each step of Algorithm 6.2.2 is discriminated by the sign (C) or (S); (C) stands for the client

machine and (S) for server machines.

Algorithm 6.2.2. (parallel implementation of discretized-localized SCRMs)

Step 0 (C): Define D1 and D2 = D(θ) with some value θ. Assign each d ∈ D1 ∪D2 to an

idle processor among V processors, and send data of d and C0 to the processor.

CHAPTER 6. PARALLEL IMPLEMENTATIONS 84

Step 1 (S): Compute α(C0,d) = max{dT x : x ∈ C0} for some d ∈ D1 ∪ D2

designated by the client machine. Return α(C0,d) to the client.

Let k = 0.

Step 2 (C): If Ck = ∅ then stop. Compute an upper bound ζk for the maximum objective

function value of QOP (6.1) by ζk = max{cT x : x ∈ Ck}. If ζk satisfies the termination

criteria, then stop.

Step 3 (C): Define the set D(θ) with some value θ. Allocate each d ∈ D(θ) to an idle

processor, and send the data of d, C0, D1, α(C0,d) (∀d ∈ D1), D2 and α(Ck,d) (∀d ∈

D2) to it.

Step 4 (S): Generate Pk = PL(C0, D1) ∪ P
2(Ck, D1, D2), and define Ck+1.

Step 5 (S): Compute α(Ck+1,d) = max{dT x : x ∈ Ck+1}. Return the value

α(Ck+1,d) to the client.

Step 6 (C): Set D2 = D(θ). Let k = k + 1 and go to Step 2 (C).

In Step 4 (S), the same set Pk of quadratic functions is generated in each server machine.

This redundant work is to reduce the transmitting time between the client machine and each

server machine. From our numerical results, we found that after the construction of Pk on

a client machine, sending data of Pk from the client machine to each server machine took

extremely much communication time. Therefore, it is better to reduce the amount of data

to be transmitted through the network as much as possible.

Remark 6.2.3. In numerical experiments, we add the objective direction c to the set D2

and solve α(Ck, c) = max{cT x : x ∈ Ck} in some server machine. Then, in Step 2 (C), we

find α(Ck, c) among α(Ck,d) with ∀d ∈ D2, and set ζk = α(Ck, c). Therefore, the work of

the client machine is only to assign each SDP (or SILP) to one of the V processors, and to

check the termination criteria. The client machine can avoid the computation for not only

solving a bounding problem but constructing Ck+1.

Remark 6.2.4. If we have enough processors to handle |D2| problems, it is better to solve

all (|D1|+ |D2|) problems;

α(Ck,d) = max{dT x : x ∈ Ck} (∀d ∈ D1 ∪D2)

at every kth iteration, and construct Ck+1 using α(Ck,d) instead of α(C0,d) for ∀d ∈ D1.

Then we can obtain the tighter relaxation Ck+1 of the nonconvex feasible region F of QOP

(6.1).

CHAPTER 6. PARALLEL IMPLEMENTATIONS 85

6.3 Computational Experiments

In this section, we present our four kinds of test problems, describe some implementation

details on Algorithms 6.1.1 and 6.2.2, and report some encouraging numerical results.

6.3.1 Test Problems

We summarize some properties of our test problems in Tables 6.2 and 6.3. They consist

of four types of problems such as (a) 0-1 integer QOPs, (b) linearly constrained QOPs, (c)

bilevel QOPs, and (d) fractional QOPs. In Section 2.1 of Chapter 2, we have shown how

to transform the above four types of problems (a), (b), (c) and (d) into QOPs. In our

numerical experiments, we applied some SCRMs to the transformed QOP (6.1). The type

of each test problem is denoted in the second column of Tables 6.2 and 6.3. The columns

n and m denote the number of variables and the number of constraints (not including box

constraints) of the transformed QOP (6.1), respectively. The column “#QC” denotes the

number of quadratic constraints among m constraints in QOP (6.1). The last column gives

the number of local optima for some types of the test problems. We denote “?” for the

case that the number of local optima is not available. We know optimum objective function

values for all test problems of Tables 6.2 and 6.3 in advance.

We give more precise description for problems (a)-(d) as follows.

(a) 0-1 integer QOP is formulated as

(0-1IQOP)

∣∣∣∣∣
min xT Qx

subject to x ∈ {0, 1}n.

We used the code of Pardalos and Rodgers [42] to generate coefficient matrices Q of the

test problems.

(b) Linearly constrained QOP can be expressed as

(LCQOP)

∣∣∣∣∣
min γ + 2qT x + xT Qx

subject to Ax ≤ b,

where Q ∈ Rn×n, q ∈ Rn, x ∈ Rn, b ∈ Rm and A ∈ Rm×n. We generate each test

problem (LCQOP) by the code of Calamai, Vincente and Judice [13]. Their construction

of (LCQOP) provides not only its optimum solution but the number of its local minima.

(c) Bilevel QOP is formulated as

(BLQOP)

∣∣∣∣∣∣∣∣∣∣∣∣∣

min
x

γ + 2qT z + zT Qz

subject to
min

y
zT Rz

subject to Az ≤ b, z =

(
x

y

)
,

CHAPTER 6. PARALLEL IMPLEMENTATIONS 86

Table 6.2: The test problems (small size)

Problem type source n m # QC # local
01int20 0-1IQOP [42] 21 21 21 ?
01int30 0-1IQOP [42] 31 31 31 ?
LC30-36 LCQOP [13] 31 46 1 36
LC30-162 LCQOP [13] 31 46 1 162
LC40-6 LCQOP [13] 41 61 1 6
LC40-72 LCQOP [13] 41 61 1 72
LC50-1296 LCQOP [13] 51 76 1 1296
BLevel3-6 BLQOP [12] 19 25 10 4
BLevel8-3 BLQOP [12] 21 22 10 4
Frac20-10 FQOP – 21 12 1 ?
Frac30-15 FQOP – 31 17 1 ?

Table 6.3: The test problems (large size)

Problem type source n m # QC # local
01int50 0-1IQOP [42] 51 51 51 ?
01int55 0-1IQOP [42] 56 56 56 ?
01int60 0-1IQOP [42] 61 61 61 ?
LC60-72 LCQOP [13] 61 91 1 72
LC70-72 LCQOP [13] 71 106 1 72
LC80-144 LCQOP [13] 81 121 1 144
BLevel20-3 BLQOP [12] 33 22 10 4
BLevel30-4 BLQOP [12] 47 29 13 8
BLevel40-4 BLQOP [12] 57 29 13 8
Frac50-20 FQOP – 51 22 1 ?
Frac60-20 FQOP – 61 22 1 ?
Frac70-25 FQOP – 71 27 1 ?

CHAPTER 6. PARALLEL IMPLEMENTATIONS 87

where x ∈ Rp, y ∈ Rq, z ∈ Rn with n = p+ q, and A ∈ Rm×n. Let Q and R be symmetric

positive semidefinite matrices, i.e., Q ∈ Sn
+ and R ∈ Sn

+. We generate test problems of

(BLQOP) by the code of Calamai and L.N.Vincente [12].

(d) Fractional QOP is generated as

(FQOP)

∣∣∣∣∣∣∣∣∣

min g(x) =
1/2 xT Qx

qT x− γ
subject to Ax ≤ b

qT x ≥ 3/2 γ.

Here x ∈ Rn, q ∈ Rn, A ∈ Rm×n, Q ∈ Sn
+ and γ ≡ 1/2 qT Q−1q. If we take a constant term

b ∈ Rm so that AQ−1q < b holds, the above (FQOP) has an optimum value 1. Indeed,

note that (FQOP) is equivalent to the problem finding λ∗ ≥ 0 such that π(λ∗) = 0, where

π(λ) = min{1/2 xT Qx− λ (qT x− γ) : x ∈ X},
where X ≡ {x : Ax ≤ b, qT x ≥ 3/2 γ}.

}
(6.13)

We see that the following problem:

min {1/2 xT Qx− qT x + γ} (6.14)

has an optimum solution x∗ = Q−1q, since Q is a positive definite matrix. Then, the

optimum solution x∗ of (6.14) achieves π(1) = 0 for the problem (6.13), and hence, the

problem (FQOP) generated by this technique has the optimum value λ∗ = g(x∗) = 1.

6.3.2 Numerical Results

To make Algorithms 6.1.1 and 6.2.2 implementable, it is necessary to clarify these issues:

(a) the value θ for D2 = D(θ), (b) termination criteria, and (c) SCRMs to be used.

(a) We start Algorithms 6.1.1 and 6.2.2 by constructing a set D2 = D(θ) with θ = π/2. If

at the kth iteration of Algorithms 6.1.1 and 6.2.2, the decrease (ζk−ζk−1) of the upper

bounds becomes little, we decrease the value θ and update D2. Otherwise, we use the

same set D2 at the next iteration. Throughout the computational experiments, we

use the following replacement rule:

Let ` = 0, θ0 = π/2, K = 3 and {σj}
K
j=0 be a decreasing sequence such that

{1,
8

9
,
4

9
,
2

9
}. If ` < K and the upper bound ζk generated at the kth iteration sat-

isfies
ζk−1 − ζk

max{|ζk|, 1.0}
< 1.0−3 × σ`,

then set ` = `+ 1, and replace D2 by D2 = D(θ) with θ = σ`θ0.

(b) If ` = K and
ζk−1 − ζk

max{|ζk|, 1.0}
< 1.0−3 × σK , we terminate the algorithm. Then, ζk is

the best upper bound found by Algorithm 6.1.1 or 6.2.2.

CHAPTER 6. PARALLEL IMPLEMENTATIONS 88

(c) We have chosen two SCRMs of DLSSILP and DLSSDP-diag, and implemented DLSSILP

on a single processor and DLSSDP-diag on multiple processors. Note that DLSSILP

is coincident with a practical SCRM (“DLSSILP”) proposed in Chapter 4.

These programs of Algorithms 6.1.1 and 6.2.2 were coded in ANSI C++ language. We

used SDPA Version 5.0 [21] as an SDP solver to compute α(C0,d) for ∀d ∈ D1 and α(Ck,d)

for ∀d ∈ D2 in Algorithm 6.2.2, and used CPLEX Version 6.5 as an LP solver to compute

them in Algorithm 6.1.1.

Our experiments were conducted to see the following three factors: (i) comparison be-

tween DLSSILP and DLSSDP-diag with respect to the number of problems generated at

every iteration and the size of each problem; (ii) the accuracy of upper bounds obtained by

DLSSDP-diag, compared with the accuracy of those generated by DLSSILP; (iii) computa-

tional efficiency of parallel Algorithm 6.2.2 using 1, 2, 4, 8, 16, 32, 64 and 128 processors.

(i) Tables 6.4 and 6.5 show the number of LPs (# LP =|D2|) generated at each iteration of

DLSSILP and the number of SDPs (# SDP =|D2|) of DLSSDP-diag. Also, they show

the number of constraints (# tot const. = |PF | + |PL(C0, D1)| + |P2(Ck, D1, D2)|)

in each problem. We see from these tables that SDPs of DLSSDP-diag have much

less constraints than LPs of DLSSILP, though the number of SDPs generated by

DLSSDP-diag is larger than that of LPs by DLSSILP.

(ii) In Tables 6.6 and 6.7, we summarize numerical results on a parallel implementation

of DLSSDP-diag, and in Table 6.8, summarize those on a serial implementation of

DLSSILP in terms of the following items:

r.Err1 : r.Err at the first iteration;

r.Err∗ : r.Err at the last iteration;

iter. : the number of iterations each algorithm repeated;

R.time : the real time in second;

C.time : the cpu time in second.

Here r.Err is the relative error of a solution, i.e., r.Err =
|fup − fopt|

max{|fopt|, 1.0}
, fopt is

the global optimum value of QOP (6.1) and fup is the best upper bound found by

each algorithm.

We ran Algorithm 6.2.2 using 128 processors of 64 server machines and 1 processor

of a client machine. We slightly modified Algorithm 6.2.2 according to the suggestion

of Remark 6.2.4, and hence, the modified algorithm generates (|D1| + |D2|) SDPs at

every iteration. Note that the number (|D1|+ |D2|) is almost twice of #SDP described

in Tables 6.4 and 6.5. Tables 6.6 and 6.7 include not only solution information of

DLSSDP-diag but time information such as C⇒S (total transmitting time from the

client to each server), exec.time (total execution time on Ninf server machines), and

CHAPTER 6. PARALLEL IMPLEMENTATIONS 89

Table 6.4: Problems generated by DLSSILP and DLSSDP-diag for small-sized QOPs

DLSSILP DLSSDP-diag
Problem # LP # tot const. # SDP # tot const.
01int20 40 1621 81 122
01int30 60 3631 117 178
LC30-36 60 3646 61 137
LC30-162 60 3646 61 137
LC40-6 80 6461 81 182
LC40-72 80 6461 81 182
BLevel3-6 36 1321 55 98
BLevel8-3 40 1622 59 101
Frac20-10 40 1612 43 76
Frac30-15 60 3617 63 110

Table 6.5: Problems generated by DLSSILP and DLSSDP-diag for large-sized QOPs

DLSSILP DLSSDP-diag
Problem # LP # tot const. # SDP # tot const.
01int50 100 10051 201 302
01int55 110 12156 221 332
01int60 120 14461 241 362
LC60-72 120 14491 121 272
LC70-72 140 19706 141 317
LC80-144 160 25721 161 362
BLevel20-3 64 4118 83 137
BLevel30-4 92 8493 117 192
BLevel40-4 112 12573 137 222
Frac50-20 100 10022 103 175
Frac60-20 120 14422 123 205
Frac70-25 140 19627 143 240

CHAPTER 6. PARALLEL IMPLEMENTATIONS 90

Table 6.6: Numerical results of DLSSDP-diag on the PC cluster (small-sized QOPs)

Problem DLSSDP-diag Time Info (sec.)
r.Err1 r.Err∗ iter. R.time (sec.) C⇒S exec.time S⇒C

01int20 8.34 6.23 6 24 0.07 1070 0.06
01int30 6.20 2.98 6 58 0.11 5811 0.10
LC30-36 100.00 5.30 9 28 0.09 1319 0.09
LC30-162 100.00 27.42 18 55 0.18 2790 0.20
LC40-6 100.00 0.89 8 43 0.12 3292 0.13
LC40-72 100.00 4.14 9 52 0.14 3783 0.14
BLevel3-6 6.53 2.44 13 18 0.11 847 0.10
BLevel8-3 6.53 2.45 13 28 0.12 1114 0.14
Frac20-10 89.36 0.92 27 54 0.22 3166 0.18
Frac30-15 89.58 0.88 26 345 0.37 25913 0.35

Table 6.7: Numerical results of DLSSDP-diag on the PC cluster (large-sized QOPs)

Problem DLSSDP-diag Time Info (sec.)
r.Err1 r.Err∗ iter. R.time (sec.) C⇒S exec.time S⇒C

01int50 107.40 104.74 3 267 0.17 26127 0.12
01int55 100.15 75.37 5 905 0.31 86000 0.23
01int60 105.20 102.53 3 607 0.22 65560 0.15
LC60-72 100.00 3.13 8 171 0.22 12627 0.20
LC70-72 100.00 2.78 8 183 0.27 18601 0.24
LC80-144 123.70 2.94 8 406 0.44 35000 0.32
BLevel20-3 8.51 7.40 8 78 0.11 1939 0.10
BLevel30-4 12.41 8.75 13 167 0.29 11326 0.27
BLevel40-4 12.40 9.08 12 230 0.33 192970 0.27
Frac50-20 89.50 0.94 26 3200 0.75 305002 0.78
Frac60-20 89.53 0.97 26 6318 1.30 734037 0.98
Frac70-25 89.37 1.50 25 14196 1.72 1483764 1.21

Legend : DLSSDP-diag is executed on the PC cluster which is
composed of 64 server machines. Each server machine has 2 pro-
cessors (CPU Pentium III 800MHz) with 640MB memory.

CHAPTER 6. PARALLEL IMPLEMENTATIONS 91

Table 6.8: Numerical results of DLSSILP on a single processor (small-sized QOPs)

Problem DLSSILP
r.Err1 r.Err∗ iter. C.time (sec.)

01int20 51.40 48.84 6 50.90
01int30 1.90 1.90 5 36.53
LC30-36 51.45 38.22 9 185.03
LC30-162 74.45 58.15 11 215.83
LC40-6 38.09 27.45 9 454.22
LC40-72 57.53 44.77 9 548.88
BLevel3-6 100.00 43.99 39 86.50
BLevel8-3 100.00 100.00 5 19.97
Frac20-10 100.00 100.00 5 18.58
Frac30-15 100.00 100.00 5 149.15

Legend : DLSSILP is implemented on one processor of DEC Alpha
Workstation (CPU 600 MHz, 1GB memory)

Table 6.9: Computational efficiency by increasing the number of processors

#proc. LC80-144 Frac50-20
R.time (sec.) ratio R.time (sec.) ratio

1 33125 1.00 289259 1.00
2 16473 2.01 145980 1.98
4 8238 4.02 72343 3.99
8 4145 7.99 36272 7.97

16 2099 15.78 18595 15.56
32 1118 29.62 9424 30.69
64 624 53.08 4822 60.00

128 361 91.76 3200 90.39

Legend : DLSSDP-diag is executed on the PC cluster which is
composed of 64 server machines. Each server machine has 2 pro-
cessors (CPU Pentium III 800MHz) with 640MB memory.

CHAPTER 6. PARALLEL IMPLEMENTATIONS 92

S⇒C (total transmitting time from each server to the client). These time data was

measured in real time. Since little data are transmitted through a network in the

parallel algorithm, we can take no notice of transmitting time between two machines.

Table 6.8 presents our numerical results on a serial implementation of DLSSILP.

DLSSILP cannot deal with the large-sized test problems of Table 6.5 except “BLevel20-

3” due to the shortage of memory on our computational environment. Thus we show

our numerical results of DLSSILP, restricted to the small-sized QOPs

From comparison between Table 6.6 and Table 6.8, we see that the upper bounds of

DLSSDP-diag are more accurate than those of DLSSILP in most cases. Especially for

fractional QOPs, DLSSDP-diag improves upper bounds significantly, compared with

DLSSILP. Therefore we can expect DLSSDP-diag to be a practical bounding method

for some difficult nonconvex QOPs, if multiple processors are available. On the other

hand, DLSSILP has the merit that it attains an upper bound fast as Table 6.8 shows,

though we cannot compare computational time between these two methods. We have

no choice but to use different processors for numerical experiments of DLSSDP-diag

and DLSSILP due to the commercial license of the CPLEX software.

(iii) We implemented DLSSDP-diag on the PC cluster which is composed of 128 pro-

cessors. Table 6.9 shows computational efficiency in proportion to the number of

processors. We compute “ratio“ which appears in the row of (#proc. = k) as
R.time of (#proc.=1)

R.time of (#proc.=k)
. The ratio indicates computational efficiency with the use of

k processors. If the ratio is sufficiently close to k (=#proc.), we can regard Algo-

rithm 6.2.2 as well paralleled. As Table 6.9 shows, the algorithm is well paralleled

with relatively small number of #proc., since the number of SDPs are sufficiently

large in comparison with #proc. so that such SDPs are allocated to server machines

in balance. Then, computational time taken by each server machine is almost same,

and good performance of parallel computation can be attained.

The numerical results demonstrate that compared with DLSSILP, DLSSDP-diag ob-

tained better upper bounds in most test problems. Moreover, DLSSDP-diag made it possi-

ble to handle larger dimensional test problems which the existing SCRM (DLSSILP) had not

attacked, by decreasing the number of constraints consisting of Ck+1 considerably. As the

first implementation for a parallel SCRM, our numerical experiments are quite satisfactory.

Chapter 7

Conclusions and Future Research

The most general class of QOPs (quadratic optimization problems) of the form (1.2) has

received far less attention than linearly constrained quadratic problems (1.1), because of

theoretical and practical difficulties in the process of solving (1.2). This thesis focused on

the difficult problem (1.2), and proposed quite unconventional solution techniques based on

SCRMs (successive convex relaxation methods). We briefly summarize the main results of

the thesis, by listing four distinct subjects. Note that the classification below corresponds

with the structure of the chapters.

• Complexity analysis [31] :

Given an arbitrary positive number ε, we bound the number k of iterations which the

conceptual SCRM requires to attain an ε-convex-relaxation. The number k is affected

by some quantities which are extracted from an input problem (1.2); the diameter

of a feasible region F in (1.2), the diameter of an initial relaxed region C0 for F , a

Lipschitz constant, a nonconvexity measure and a nonlinearity measure. The latter

three quantities are obtained from quadratic constraints included in QOP (1.2).

• Practical SCRMs [62] :

Practical versions of the discretized-localized SCRMs were implemented. Numerical

results demonstrated that the methods could generate relatively good upper bounds

for maximum objective function values in most test problems, compared with the

reformulation-linearization technique (RLT) [55, 56, 54].

• Special SCRMs to bilevel programs [64] :

A BQOP (bilevel quadratic optimization problem) results in one-level QOPs via two

equivalent transformations. An exploitation of the special structure in the transformed

QOPs accelerates the SCRM and generates tighter upper bounds for maximum ob-

jective function values.

• Parallel SCRMs [63] :

A SCRM suitable to parallel computing was implemented on a PC cluster. In most

93

CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH 94

benchmark problems, it achieved tighter upper bounds than some other SCRMs pro-

posed in Chapter 4. Moreover, it handled larger-sized problems which other SCRMs

had not dealt with.

As we stated in Chapters 1 and 2, our problem (1.2) includes various classes of mathe-

matical programs, and therefore, our SCRMs proposed in Chapters 4 and 6 are applicable

to them. However, if such problems (1.2) have some nice structure, we should adapt the

general SCRM to the structure, as we designed the special SCRM to BQOPs in Chapter 5.

Here we will sketch several directions for future research. See, Figure 7.1. The studies

in two boxes were already completed. We pay attention to the following three studies; (i),

(ii) and (iii).

(i) Algorithm for an ε-approximate solution :

The SCRM presented in the thesis generates an upper bound for QOP (1.2), since we

have no theoretical result on the relations between ε > 0, κ > 0 and δ > 0 introduced

in Theorem 2.3.3 of Chapter 2. However, by incorporating some SCRM into a branch-

and-bound method, we can obtain an ε-approximate solution with very small error

ε > 0 even for difficult classes of nonconvex QOPs (1.2). Our SCRM consumes

relatively much computational time in order to achieve a tighter upper bound for the

maximum objective function value of (1.2), while the tight bound reduces the number

of branching processes, i.e., the number of subproblems to be solved. If we use the

SCRM as an upper-bounding procedure in a branch-and-bound method, we propose

stopping the SCRM within first several iterations. The upper bound provided by the

SCRM with such a new stopping criterion might be tight enough. This is confirmed

from Figure 4.1 of Chapter 4, and Figures 5.1 and 5.2 of Chapter 5, since in a sequence

of upper bounds obtained by the SCRM, a drastic decrease occurs at an early stage

of the execution of the algorithm.

(ii) More general nonlinear programs :

In connection with SCRMs, Kojima-Matsumoto-Shida [30] pointed out that a wide

class of nonlinear programs can be reduced to nonconvex QOPs (1.2). See Exam-

ple 2.1.4 of Section 2.1. Their technique makes it possible to extend the SCRMs

discussed in the thesis, to a wide class of nonlinear programs. That is, for any SCRM,

we could further weaken the assumption of quadratic functions to a wide class of non-

linear functions. Actually, the short note [22] reports preliminary numerical results

on a SCRM applied to more general nonlinear programs.

(iii) Complexity analysis for other SCRMs :

Chapter 3 investigated computational complexity of the conceptual SCRMs. This

study provides a new way of complexity analysis for other SCRMs such as

• conceptual SCRMs for general nonlinear programs,

• discretized-localized SCRMs for quadratic programs.

CHAPTER 7. CONCLUSIONS AND FUTURE RESEARCH 95

Conceptual Methods ((almost) exact-solution technique)� �

Kojima-Tunçel [32] −→ Kojima-Takeda [31]
Conceptual SCRMs Analyzed Complexity Analysis

Kojima-Tunçel [33]
Discretized-Localized SCRMs

� �
⇓

(iii) Complexity analysis for other SCRMs

⇑

Practical Methods (relaxation technique)� �

Takeda-Dai-Fukuda-Kojima [62] −→ Takeda-Kojima [64]
Practical SCRMs Specialized Special SCRMs to

Bilevel Programs

↓ Paralleled

Takeda-Fujisawa-Fukaya-Kojima [63]
Parallel SCRMs

� �

⇓

(i) Algorithm for an ε-approximate solution

(ii) More general nonlinear programs

Figure 7.1: Future work of SCRMs : (i), (ii) and (iii)

Bibliography

[1] E. Aiyoshi and K. Shimizu, “Hierarchical decentralized systems and its new solution

by a barrier method,” IEEE Transactions on Systems, Man and Cybernetics SMC-11

(1981) 444–449.

[2] E. Aiyoshi and K. Shimizu, “A solution method for the static constrained Stackelberg

problem via penalty method,” IEEE Transactions on Automatic Control AC-29 (1984)

1111–1114.

[3] F. Alizadeh, “Interior point methods in semidefinite programming with applications

to combinatorial optimization,” SIAM Journal on Optimization 5 (1995) 13–51.

[4] F.A. AL-Khayyal and J.E. Falk, “Jointly constrained biconvex programming,” Math-

ematics of Operations Research 8 (1983) 273-286.

[5] F.A. AL-Khayyal and C. Larsen, “Global optimization of a quadratic function subject

to a bounded mixed integer constraint set,” Annals of Operations Research 25 (1990)

169-180.

[6] C. Audet, P. Hansen, B. Jaumard and G. Savard, “A branch and cut algorithm for

nonconvex quadratically constrained quadratic programming,” Mathematical Program-

ming 87 (2000) 131–152.

[7] F. Avram and L.M. Wein, “A product design problem in semiconductor manufactur-

ing,” Operations Research 40 (1992) 999–1017.

[8] J. Balakrishnan, F.R. Jacobs and M.A. Venkataramanan, “Solutions for the constrained

dynamic facility layout problem,” European Journal of Operations Research 57 (1992)

280–286.

[9] E. Balas, S. Ceria and G. Cornuéjols, “A lift-and-project cutting plane algorithm for

mixed 0-1 programs,” Mathematical Programming 58 (1993) 295–323.

[10] J.F. Bard, “Convex two-level optimization,” Mathematical Programming 40 (1988)

15–27.

[11] R.W. Cottle, J.S. Pang and R.E. Stone, The Linear Complementarity Problem (Aca-

demic Press, New York, 1992).

96

BIBLIOGRAPHY 97

[12] P.H. Calamai and L.N. Vicente, “Generating quadratic bilevel programming problems,”

ACM Transactions on Mathematical Software 20 (1994) 103–122.

[13] P.H. Calamai, L.N. Vincente and J.J. Judice, “A new technique for generating quadratic

programming test problems,” Mathematical Programming 61 (1993) 215–231.

[14] E.V. Denardo and C.S. Tang, “Linear control of a Markov production system,” Oper-

ations Research 40 (1992) 259–278.

[15] T.G.W. Epperly and R.E. Swaney, “Branch and bound for global NLP : Iterative LP

algorithm and results”, in I.E. Grossmann (ed.), Global Optimization in Engineering

Design (Kluwer Academic Publishers, Dordrecht, 1996).

[16] J.E. Falk and S.W. Palocsay, “Optimizing the sum of linear fractional functions”,

in C.A. Floudas and P.M. Pardalos (eds.), Recent Advances in Global Optimization

(Princeton University Press, Princeton, 1992).

[17] C.A. Floudas and P.M. Pardalos, A Collection of Test Problems for Constrained Global

Optimization Algorithms, Lecture Notes in Computing Science Vol. 455 (Springer-

Verlag, Berlin, 1990).

[18] C.A. Floudas and V. Visweswaran, “Quadratic optimization”, in R. Horst and

P.M. Pardalos (eds.), Handbook of Global Optimization (Kluwer Academic Publishers,

Dordrecht, 1995).

[19] T. Fujie and M. Kojima, “Semidefinite relaxation for nonconvex programs,” Journal

of Global Optimization 10 (1997) 367–380.

[20] K. Fujisawa, M. Kojima and K. Nakata, “Exploiting sparsity in primal-dual interior-

point methods for semidefinite programming,” Mathematical Programming 79 (1997)

235–253.

[21] K. Fujisawa, M. Kojima and K. Nakata, “SDPA (Semidefinite Programming Algorithm)

– User’s Manual –,” Technical Report B-308, Dept. of Mathematical and Computing

Sciences, Tokyo Institute of Technology, Meguro, Tokyo, Japan, revised May 1999.

[22] M. Fukuda and M. Kojima, “Approximation of global optimal values of noncon-

vex programs using Successive Convex Relaxation Method,” Continuous and Discrete

Mathematics for Optimization, Research Institute for Mathematical Sciences, RIMS

Kokyuroku 1114, Kyoto, 1999.

[23] M.X. Goemans, “Semidefinite programming in combinatorial optimization,” Mathe-

matical Programming 79 (1997) 143–161.

[24] K.C. Goh, M.G. Safonov and G.P. Papavassilopoulos, “Global optimization for the

biaffine matrix inequality problem,” Journal of Global Optimization 7 (1995) 365-380.

BIBLIOGRAPHY 98

[25] I.E. Grossmann and A. Kravanja, “Mixed-integer nonlinear programming : A survey of

algorithms and applications,” in L.T. Biegler, T.F. Coleman, A.R. Conn and F.N San-

tosa (eds.), Large-Scale Optimization with Applications, Part II : Design and Control

(Springer-Verlag, Berlin, 1997).

[26] M. Grötschel, L. Lovász and A. Schrijver, Geometric algorithms and combinatorial

optimization (Springer-Verlag, Berlin, 1988).

[27] R. Horst and H. Tuy, Global Optimization, Second, Revised Edition (Springer-Verlag,

Berlin, 1992).

[28] S.H. Hum and R.K. Sarin, “Simultaneous product-mix planning, lot sizing and schedul-

ing at bottleneck facilities,” Operations Research 39 (1991) 296–307.

[29] H. Juel and R.F. Love, “The dual of a generalized minimax location problem,” Annals

of Operations Research 40 (1991) 261–264.

[30] M. Kojima, T. Matsumoto and M. Shida, “Moderate Nonconvexity = Convexity +

Quadratic Concavity” Technical Report B-348, Dept. of Mathematical and Computing

Sciences, Tokyo Institute of Technology, Meguro, Tokyo, Japan, revised April 1999.

[31] M. Kojima and A. Takeda, “Complexity analysis of successive convex relaxation meth-

ods for nonconvex sets,” Technical Report B-350, Dept. of Mathematical and Comput-

ing Sciences, Tokyo Institute of Technology, Meguro, Tokyo, Japan, revised July 1999,

to appear in Mathematics of Operations Research.

[32] M. Kojima and L. Tunçel, “Cones of matrices and successive convex relaxations of

nonconvex sets,” SIAM Journal on Optimization 10 (2000) 750–778.

[33] M. Kojima and L. Tunçel, “Discretization and Localization in Successive Convex Re-

laxation Methods for Nonconvex Quadratic Optimization Problems,” Technical Report

B-341, Dept. of Mathematical and Computing Sciences, Tokyo Institute of Technology,

Meguro, Tokyo, Japan, July 1998, to appear in Mathematical Programming A.

[34] H. Konno, P.T. Thach and H. Tuy, Optimization on low rank nonconvex structures

(Kluwer Academic Publishers, Dordrecht, 1997).

[35] L. Lovász and A. Schrijver, “Cones of matrices and set functions and 0-1 optimization,”

SIAM Journal on Optimization 1 (1991) 166–190.

[36] Z.Q. Luo, J.S. Pang and D. Ralph, Mathematical Programming with Equilibrium Con-

straints (Cambridge University Press, Cambridge, 1996).

[37] G.P. McCormick, “Computability of global solutions to factorable nonconvex programs:

part I - convex underestimating problems,” Mathematical Programming 10 (1976) 147–

175.

BIBLIOGRAPHY 99

[38] M. Mesbahi and G.P. Papavassilopoulos, “A cone programming approach to the bilinear

matrix inequality problem and its geometry,” Mathematical Programming 77 (1997)

247–272.

[39] Y.E. Nesterov, “Semidefinite relaxation and nonconvex quadratic optimization,”

CORE Discussion Paper, #9744, 1997.

[40] Y.E. Nesterov and A.S. Nemirovskii, Interior-Point Polynomial Algorithms in Convex

Programming (SIAM, Philadelphia, 1994).

[41] M.G. Nicholls, “The application of non-linear bilevel programming to the aluminium

industry,” Journal of Global Optimization 8 (1996) 245–261.

[42] P.M. Pardalos and G. Rodgers, “Computational aspects of a branch and bound algo-

rithm for quadratic 0-1 programming,” Computing 45 (1990) 131–144.

[43] P.M. Pardalos and S.A. Vavasis, “Quadratic programming with one negative eigenvalue

is NP-hard,” Journal of Global Optimization 1 (1991) 843–855.

[44] G. Pataki and L. Tunçel, “On the generic properties of convex optimization problems

in conic form,” Research Report 97–16, Dept. of Combinatorics and Optimization,

University of Waterloo, Waterloo, Ontario, Canada, 1997.

[45] S. Poljak, F. Rendl and H. Wolkowicz, “A recipe for semidefinite relaxation for (0,1)-

quadratic programming,” Journal of Global Optimization 7 (1995) 51–73.

[46] M.V. Ramana, An algorithmic analysis of multiquadratic and semidefinite programming

problems, PhD thesis, Johns Hopkins University, Baltimore, MD, 1993.

[47] H.S. Ryoo and N.V. Sahinidis, “A branch-and-reduce approach to global optimization,”

Journal of Global Optimization 8 (1996) 107–139.

[48] N.V. Sahinidis, “BARON : Branch and reduce optimization navigator, User’s manual

ver. 3.0”, Dept. of Chemical Engineering, University of Illinois, Urbana, Illinois, 1998.

[49] N.V Sahinidis and I.E. Grossmann, “Reformulation of multiperiod MILP models for

planning and scheduling of chemical processes”, Computers & Chemical Engineering

15 (1991) 255-272.

[50] M. Sato, H. Nakada, S. Sekiguchi, S. Matsuoka, U. Nagashima and H. Takagi, “Ninf: a

network based information library for a global world-wide computing infrastructure,”

in P. Sloot and B. Hertzberger (eds.), High-Performance Computing and Networking,

Lecture Notes in Computing Science Vol. 1225 (Springer-Verlag, Berlin, 1997).

[51] S. Schaible, “Fractional programming” in R. Horst and P.M. Pardalos (eds.), Handbook

of Global Optimization (Kluwer Academic Publishers, Dordrecht, 1995).

BIBLIOGRAPHY 100

[52] S. Sekiguchi, M. Sato, H. Nakada, S. Matsuoka and U. Nagashima , “– Ninf –: network

based information library for globally high performance computing,” in Proc. of Parallel

Object-Oriented Methods and Applications (POOMA’96), February 1996.

[53] H.D. Sherali and W.P. Adams, “A hierarchy of relaxations between the continuous and

convex hull representations for zero-one programming problems,” SIAM Journal on

Discrete Mathematics 3 (1990) 411–430.

[54] H.D. Sherali and W.P. Adams, “A hierarchy of relaxations and convex hull character-

izations for mixed-integer zero-one programming problems,” Discrete Applied Mathe-

matics 52 (1994) 83–106.

[55] H.D. Sherali and A. Alameddine, “A new reformulation-linearization technique for

bilinear programming problems,” Journal of Global Optimization 2 (1992) 379–410.

[56] H.D. Sherali and C.H. Tuncbilek, “A global optimization algorithm for polynomial pro-

gramming problems using a reformulation-linearization technique,” Journal of Global

Optimization 2 (1992) 101–112.

[57] H.D. Sherali and C.H. Tuncbilek, “A reformulation-convexification approach for solving

nonconvex quadratic programming problems,” Journal of Global Optimization 7 (1995)

1–31.

[58] K. Shimizu and E. Aiyoshi, “A new computational method for Stackelberg and min-

max problems by use of a penalty method,” IEEE Transactions on Automatic Control

AC-26 (1981) 460–466.

[59] N.Z. Shor, “Dual quadratic estimates in polynomial and boolean programming,” An-

nals of Operations Research 25 (1990) 163-168.

[60] R.A. Stubbs and S. Mehrotra, “A branch-and-cut method for 0-1 mixed convex

programming,” Technical Report 96-01, Dept. of IE/MS, Northwestern University,

Evanston, IL 60208, revised October 1997.

[61] R.E. Swaney, “Global solution of algebraic nonlinear programs,” AIChE Annual Meet-

ing, Chicago, 1990.

[62] A. Takeda, Y. Dai, M. Fukuda, and M. Kojima, “Towards the Implementation of Suc-

cessive Convex Relaxation Method for Nonconvex Quadratic Optimization Problems,”

in P.M. Pardalos (ed.), Approximation and Complexity in Numerical Optimization:

Continuous and Discrete Problems (Kluwer Academic Publishers, Dordrecht, 2000).

[63] A. Takeda, K. Fujisawa, Y. Fukaya, and M. Kojima, “‘A Parallel Successive Convex

Relaxation Algorithm for Quadratic Optimization Problems,” to appear in Optimiza-

tion - Modeling and Algorithms, The Institute of Statistical Mathematics Cooperative

Research Report 126, Tokyo, 2001.

BIBLIOGRAPHY 101

[64] A. Takeda and M. Kojima, “Successive Convex Relaxation Approach to Bilevel

Quadratic Optimization Problems,” Technical Report B-352, Dept. of Mathemati-

cal and Computing Sciences, Tokyo Institute of Technology, Meguro, Tokyo, Japan,

August 1999, to appear in M.C. Ferris, O.L. Mangasarian and J.S. Pang (eds.), Appli-

cations and Algorithms of Complementarity (Kluwer Academic Publishers, Dordrecht).

[65] A. Takeda, M. Kojima and K. Fujisawa, “A Combinatorial Problem Arising from

Polyhedral Homotopies for Solving Polynomial Systems,” Continuous and Discrete

Mathematics for Optimization, Research Institute for Mathematical Sciences, RIMS

Kokyuroku 1115, Kyoto, 2000.

[66] A. Takeda and H. Nishino, “On Measuring the Inefficiency with the Inner-Product

Norm in Data Envelopment Analysis,” Technical Report B-343, Dept. of Mathematical

and Computing Sciences, Tokyo Institute of Technology, Meguro, Tokyo, Japan, revised

August 1999, to appear in European Journal of Operational Research.

[67] H. Tuy, Convex analysis and Global Optimization (Kluwer Academic Publishers, Dor-

drecht, 1998).

[68] L.N. Vicente and P.H. Calamai, “Bilevel and multilevel programming : A bibliography

review,” Journal of Global Optimization 5 (1994) 291–306.

[69] V. Visweswaran and C.A. Floudas, “A global optimization (GOP) for certain classes

of nonconvex NLPs – II. Application of theory and test problems,” Computers and

Chemical Engineering 14 (1990) 1419–1434.

[70] V. Visweswaran, C.A. Floudas, M.G. Ierapetritou and E.N. Pistikopoulos, “A

decomposition-based global optimization approach for solving bilevel linear and

quadratic programs,” in C.A. Floudas and P.M. Pardalos (eds.), State of the Art

in Global Optimization (Kluwer Academic Publishers, Dordrecht, 1996).

[71] T.V. Voorhis and F. Al-khayyal, “Accelerating convergence of branch-and-bound al-

gorithms for quadratically constrained optimization problems,” in C.A. Floudas and

P.M. Pardalos (eds.), State of the Art in Global Optimization (Kluwer Academic Pub-

lishers, Dordrecht, 1996).

[72] Y. Ye, “Approximating quadratic programming with quadratic constraints,” Working

paper, Dept. of Management Sciences, The University of Iowa, April 1997.

